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Abstract 

The Proof-of-Proof (“PoP”) consensus protocol enables blockchains to inherit the Proof-

of-Work security from other blockchains in an entirely Decentralized, Trustless, 

Transparent, and Permissionless (“DTTP”) manner. PoP functions without the 

involvement or approval of Bitcoin miners, without any centralized entities or federated 

nodes, and without imposing any technical limitations on blockchains which adopt the 

protocol. 

The VeriBlock blockchain implements the Proof-of-Proof consensus protocol and is 

designed to allow the efficient, secure, and easy-to-implement inheritance of Bitcoin’s 

Proof-of-Work security by a theoretically unbounded quantity of additional blockchains.   

To best serve this purpose, many design decisions were made in the VeriBlock blockchain 

protocol to properly incentivize rational economic actor behavior which benefits its 

security profile. The resulting incentive system design considers the existing structure 

and design of the Bitcoin blockchain protocol, the desired characteristics of Proof-of-

Proof and Proof-of-Work miner behavior on the VeriBlock blockchain, and the behaviors 

of PoW and PoP mining markets.  

To provide the highest possible security profile in a variety of adverse conditions, the 

consensus algorithm for the VeriBlock blockchain is designed with consideration for 

many flavors of consensus attacks. 

Current progress in other areas of scalability, including off-chain transactional networks 

and sidechains, benefit from a hierarchical security model which enables all blockchains 

to operate under the security context of Bitcoin. 

https://www.veriblock.org/
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1    Introduction  
One of the largest issues facing blockchains today—their ability to reach and maintain 

consensus over blockchain state—has sparked a variety of debates over the security of a broad 

selection of existing and upcoming technologies. 

While many altchains adopted the same Proof-of-Work consensus protocol as Bitcoin, these 

blockchains are vulnerable to 51% attacks (wherein a miner controlling more than half of the 

Proof-of-Work power of a particular blockchain is able to re-write the history of transactions 

on the chain). In an attempt to solve this vulnerability, a variety of alternative consensus 

protocols have been proposed and developed. Each of these consensus algorithms trade off 

some of the advantages of Proof-of-Work: losing thermodynamically-sound security 

expectations and permissionless block creation, no-longer having mathematically-verifiable 

replaying of network history, having the potential for a majority validator set controller to 

exert complete censorship of the network in perpetuity by preventing new validator set 

entries, etc. 

Our Proof-of-Proof (“PoP”) consensus protocol allows any blockchain, regardless of consensus 

protocol (PoW, PoS, DPoS, PoC, etc.) to inherit the Bitcoin blockchain’s Proof-of-Work security 

while simultaneously addressing weak subjectivity and perpetual validator set control for non-

PoW consensus. 

In order to extend Bitcoin’s PoW security to other blockchain in the most efficient, secure, and 

scalable manner possible, we designed the VeriBlock blockchain, which acts as an 

intermediate security aggregation layer. The incentive structure of the VeriBlock blockchain 

protocol is designed to incentivize the continued operation of the VeriBlock blockchain while 

maintaining decentralization at both the PoW and PoP miner levels, maintaining a high 

security profile in a large variety of external fee market and information availability scenarios, 

de-incentivize attacks against the system by increasing the cost of and reducing or eliminating 

the possible rewards for a successful attack, and promoting timely and easily-verifiable 

inclusion of PoP publication data from other blockchains inheriting security from VeriBlock in 

order to extend these same benefits to them. The consensus algorithm of the VeriBlock 

blockchain is designed to simultaneously resist a variety of attacks including censorship by 

Bitcoin PoW miners, standard 51% attacks, and ambiguous disconnected chain publications.  
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2     VeriBlock and Proof-of-Proof Introduction  
The Proof-of-Proof consensus protocol allows one blockchain to inherit the full Proof-of-Work 

security of another blockchain in an entirely decentralized, trustless, transparent, and 

permissionless manner. In the VeriBlock ecosystem, VeriBlock secures to Bitcoin using PoP, 

and altchains use PoP to secure themselves to VeriBlock (and by extension, Bitcoin). 

 

2.1    VeriBlock and Proof-of-Proof At-A-Glance  

PoP works by incentivizing the publication of a Security-Inheriting (SI) blockchain’s current 

state to a Security-Providing (SP) blockchain, and then referencing those publications in the 

future when an alternate fork of the SI blockchain is proposed to the SI blockchain network. 

Rules regarding the weighting and validity requirements (see chapter 6) of the publications 

force an attacker to announce the potential attack of the SI blockchain to the SP blockchain 

within a particular timeframe from the first challenged block in the attack. The absence of 

challenge publications after this timeframe (or the abandonment of a potential alternate chain 

due to a lack of future publications) marks all transactions in the block in question (as well as 

all previous blocks) with SP-finality, meaning an attacker would have to 51% attack the SP 

blockchain to insert fingerprints of the attacking SI chain sufficiently high in the SP blockchain 

to trigger a SI reorganization.  

In order to be able to use PoP to secure itself to Bitcoin, the VeriBlock blockchain (the SI 

blockchain to Bitcoin, and the SP blockchain to altchains) itself has made a large number of 

design decisions that differ from those of other blockchains. Additionally, the architecture of 

the VeriBlock blockchain makes it the most cost-effective, easy-to-use, and secure way for an 

altchain to inherit Bitcoin’s PoW security while imposing no limitations on the altchain’s 

structure, consensus algorithm, etc. and requiring minimal changes to the altchain’s codebase. 

The particular implementation details and blockchain architecture decisions of the VeriBlock 

blockchain (see chapters 7 and 8) enable it to continue to function optimally in a variety of 

adversarial conditions including censorship by minority Bitcoin miners, highly volatile Bitcoin 

fee markets, and rapid (malicious or non-malicious) increases and decreases in VeriBlock and 

Bitcoin mining power. Additionally, VeriBlock can continue to inherit and extend Bitcoin’s full 

PoW security even in times of infrequent publication to Bitcoin, and its incentivization 

structure is implemented in such a way as to economically disincentivize VeriBlock and Bitcoin 

PoW miners from censoring PoP transactions, even if they themselves are competing in the 

PoP mining process.  

Similarly, the recommendations for how altchains should leverage VeriBlock for security carry 

the same resistance to adversarial conditions to the altchain network.  
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2.2    Proof-of-Proof: End-User Perspective  

Proof-of-Proof prevents double-spending by ensuring full-visibility of the security level of 

particular SI block (and thus, all transactions within) at any particular point in time. “Early 

Attack Detection” (EAD) uses publications of SI state data to the SP chain to determine these 

security levels. For example, the lifecycle of a transaction on the VeriBlock blockchain (secured 

with PoP to Bitcoin) looks like this:  

 

VeriBlock Transaction Lifecycle 

Stage Description 

UNCONFIRMED The transaction is in the VeriBlock blockchain mempool 

N-CONFIRMED The transaction is confirmed by N VeriBlock blocks 

N-BTC-REFERENCES 
The transaction is in a VeriBlock block which was 
referenced N Bitcoin blocks ago, and early attack 

detection metrics can begin to function 

N-BTC-FINALITY 
The transaction has achieved Bitcoin finality; and N BTC 

blocks would need to be forked to challenge it 

For an altchain using PoP through VeriBlock, the transaction lifecycle would look like this: 

 

Altchain Transaction Lifecycle 

Stage Description 

UNCONFIRMED The transaction is in the altchain blockchain mempool 

N-CONFIRMED The transaction is confirmed by N altchain blocks 

N-VBK-REFERENCES 
The transaction is in an altchain block which was 

referenced N VeriBlock blocks ago, and early attack 
detection metrics can begin to function 

N-VBK-FINALITY 
The transaction has achieved VeriBlock finality; and N 

VBK blocks would need to be forked to challenge it 

N-BTC-REFERENCES 
The VeriBlock block which provided VeriBlock finality to 

the transaction was referenced N Bitcoin blocks ago 

N-BTC-FINALITY 
The transaction has achieved Bitcoin finality; and N BTC 

blocks would need to be forked to challenge it 

 

Depending on the properties of the particular altchain (its block time, expected block time 

creation time variance, etc.) the “N-VBK-FINALITY” may occur after “N-BTC-REFERENCES” 

occurs, but will always occur before N-BTC-FINALITY if altchain security parameters are 

chosen correctly. 
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The integration of VeriBlock Proof-of-Proof into the altchain allows each of the altchain’s 

users to decide on what level of transaction security they are comfortable with for a 

particular transaction, and to get real-time information about whether an incoming 

transaction has reached that level of security yet.  

Most merchants, exchanges, and other users working with large or numerous high-risk 

altchain transactions will wait for some N-BTC-FINALITY security level (such as 3-BTC-

FINALITY, meaning 3 BTC blocks would have to be forked to challenge the transaction). Users 

who are comfortable with the security of the altchain’s short-term consensus protocol 

(PoW/PoC/PoS/DPoS/etc.) itself can operate in the same fashion as they would without PoP, 

and users with moderate risk profiles may opt to accept transactions at the VeriBlock-finality 

level if VeriBlock’s native PoW is deemed sufficient protection. 

It should be noted that even if N BTC blocks were to be forked, an attacker would also have 

to simultaneously fork a large number of VeriBlock blocks and a large number of altchain 

blocks to successfully perform a double-spend, meaning the altchain transaction is actually 

more secure against double-spends than a transaction on Bitcoin with N confirmations.  
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3     Desirable Miner Behaviors  
At a high level, an SI blockchain uses an intermediate consensus protocol 

(PoW/PoC/PoS/DPoS, etc.) to construct blocks and maintain intermediate consensus, and 

incentivizes Proof-of-Proof miners to periodically publish fingerprints of the current state of 

the SI chain to the SP chain, which are referenced in the event of an SI fork to determine the 

legitimate chain. 

The reward protocol of the SI chain is designed to incentivize three behaviors which benefit 

the system’s intended functionality: 

• SI PoP miners should publish PoP data to the first possible SP block and return the 

proofs of publication to the SI chain as soon as they are available 

• SI block (PoW/PoC/PoS/DPoS, etc.) miners should include all available PoP transactions 

in their blocks 

• SP PoW miners should include all fee-market-competitive SI PoP transactions in their 

blocks 

In the special case of VeriBlock, VeriBlock PoP miners publish data to Bitcoin, altchain PoP 

miners publish data to VeriBlock, and VeriBlock PoW miners create blocks which include 

VeriBlock-to-Bitcoin PoP transactions and normal VeriBlock transactions (including those 

made by altchain PoP miners). 

 

3.1    SI PoP Miners  

A SI PoP miner takes data from the SI chain (such as the block header of the most recent block, 

along with data to identify the PoP miner for payment), embeds that data in a SP transaction, 

submits that SP transaction to the SP network, waits for it to be included in a SP block, 

constructs an SPV-like proof that the transaction exists in the SP block (including any additional 

SP headers required to demonstrate that the block itself is a valid block in the SP chain), 

packages this proof in a PoP transaction, and submits this transaction to the SI network in 

order to inform the network about the completed publication. 

PoP miners compete by trying to pay the lowest possible SP transaction fees while earning the 

highest possible PoP miner payout. Lower fees have a potential for a higher profit, but also 

risk being paid less (or not being paid at all) because of their delayed incorporation into the 

SP blockchain. 

The ideal PoP miner: 

• Publishes data regarding a SI block from the most recent keystone period (see  section 

6.2) 

• Publishes this data in a SP transaction which makes it into the next SP block 

• Returns a proof of publication to the SI chain as soon as it is available 
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3.2    SI Block Miners  
A SI block miner bundles transactions on the SI blockchain network (including returning PoP 

receipt transactions from SI PoP miners) and does some form of mining (PoW/PoC/PoS/DPoS, 

etc.) to create SI blocks and provide intermediate consensus to the SI chain. 

The ideal block miner: 

• Mines on top of the latest SI block 

• Includes as many available SI PoP transactions as possible in their block 

• Includes as many regular transactions as possible/allowed in their block, giving priority 

to transactions with higher per-byte fees 

 

3.3    SP PoW Miners  
A SP PoW miner bundles transactions on the SP blockchain network (including “publication” 

transactions from SI PoP miners) and does Proof-of-Work mining to create SP blocks, 

providing SP-level security to the SI blocks which are published, directly or indirectly, in the 

produced SP block. 

The ideal SP PoW Miner: 

• Includes SP transactions based on their competitiveness in the normal SP fee market 

• Doesn’t censor SI PoP transactions (putting in only their own transaction to claim a 

large reward), even if the SP PoW miner is also a participant in the SI PoP mining 

process 
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4    Modeling Block Time Probabilities  
The expected block times of Bitcoin, VeriBlock, and altchain blockchains can be modeled as 

exponential distributions. Understanding the distribution of these block times allows for the 

proper determination of reward and consensus finality intervals which maximize the security 

profile of blockchains adopting PoP, including VeriBlock itself. 

 

4.1    Expected Bitcoin Block Times  

The probability of a Bitcoin block taking more than x seconds, with a target blocktime of 600 

seconds (or 10 minutes), can be modeled with an exponential formula: 

p =  𝑒
−𝑥
600 

 

The following table illustrates these probabilities: 

Probability 
Block Takes Longer Than: 

(seconds) (minutes) 

1.000 0.0000 0.0000 

0.999 0.6003 0.0100 

0.995 3.0075 0.0501 

0.990 6.0303 0.1001 

0.980 12.1217 0.2020 

0.970 18.2756 0.3046 

0.960 24.4932 0.4082 

0.950 30.7760 0.5129 

0.940 37.1253 0.6188 

0.920 50.0290 0.8388 

0.900 64.2164 1.0536 

0.880 76.7001 1.2783 

0.860 90.4938 1.5082 

0.840 104.6121 1.7435 

0.820 119.0706 1.9845 

0.800 133.8862 2.2314 

0.750 172.6093 2.8768 

0.700 214.0050 3.5668 

0.650 258.4698 4.3078 

0.600 306.4954 5.1083 

0.550 358.7023 5.9784 

 

Probability 
Block Takes Longer Than: 

(seconds) (minutes) 

0.500 415.8884 6.9315 

0.450 479.1047 7.9851 

0.400 549.7745 9.1629 

0.350 629.8933 10.4982 

0.300 722.3837 12.0397 

0.250 831.7767 13.8629 

0.200 965.6628 16.0944 

0.180 1028.8791 17.1480 

0.160 1099.5489 18.3258 

0.140 1179.6678 19.6611 

0.120 1272.1582 21.2026 

0.100 1381.5511 23.0259 

0.080 1515.4372 25.2573 

0.060 1688.0465 28.1341 

0.050 1797.4394 29.9573 

0.040 1931.3255 32.1888 

0.030 2103.9348 35.0656 

0.020 2347.2139 39.1202 

0.010 2763.1022 46.0517 

0.005 3178.9904 52.9832 

0.001 4144.6532 69.0776 

Additionally, the probability that exactly y Bitcoin blocks occur in a period of x seconds can be 

modeled with a Poisson distribution: 

p =  
(

𝑥
600

)
𝑦

𝑒(
−𝑥
600)

𝑦!
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4.2   Expected VeriBlock Block Times  

The probability of a VeriBlock block taking more than x seconds, with a target blocktime of 30 

seconds (which was chosen for reasons detailed in section 7.6) can be modeled with an 

exponential formula: 

p =  𝑒
−𝑥
30  

 

The following table illustrates these probabilities: 

Probability 
Block Takes Longer Than: 

(seconds) (minutes) 

1.000 0.0000 0.0000 

0.999 0.0300 0.0005 

0.995 0.1504 0.0025 

0.990 0.3015 0.0050 

0.980 0.6061 0.0101 

0.970 0.9138 0.0152 

0.960 1.2247 0.0204 

0.950 1.5388 0.0256 

0.940 1.8563 0.0309 

0.920 2.5015 0.0417 

0.900 3.1608 0.0527 

0.880 3.8360 0.0639 

0.860 4.5247 0.0754 

0.840 5.2306 0.0872 

0.820 5.9535 0.0992 

0.800 6.6943 0.1116 

0.750 8.6305 0.1438 

0.700 10.7002 0.1783 

0.650 12.9235 0.2154 

0.600 15.3248 0.2554 

0.550 17.9351 0.2989 

Probability 
Block Takes Longer Than: 

(seconds) (minutes) 

0.500 20.7944 0.3466 

0.450 23.9552 0.3993 

0.400 27.4887 0.4581 

0.350 31.4947 0.5249 

0.300 36.1192 0.6020 

0.250 41.5888 0.6931 

0.200 48.2831 0.8047 

0.180 51.4440 0.8574 

0.160 54.9774 0.9163 

0.140 58.9834 0.9831 

0.120 63.6079 1.0601 

0.100 69.0776 1.1513 

0.080 75.7719 1.2629 

0.060 84.4023 1.4067 

0.050 89.8720 1.4979 

0.040 96.5663 1.6095 

0.030 105.1970 1.7533 

0.020 117.3610 1.9560 

0.010 138.1550 2.3026 

0.005 158.9500 2.6492 

0.001 207.2330 3.4539 

Additionally, the probability that exactly y VeriBlock blocks occur in a period of x seconds can 

be modeled with a Poisson distribution: 

p =  
(

𝑥
30

)
𝑦

𝑒(
−𝑥
30)

𝑦!
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4.3   Expected Relative Bitcoin Block per VeriBlock Block Occurrences 

As both the creation of Bitcoin and VeriBlock blocks exist as Poisson processes, the 

probability p that n Bitcoin blocks occur before m VeriBlock blocks (assuming the difficulty of 

both networks matches their current hashrate) can be modeled as: 

p =   ∑ (
𝑛 + 𝑚 − 1

𝑘
) (

1
600

1
600

  +  
1

30

)

𝑘

(

1
30

1
600

  +  
1

30

)

𝑛+𝑚−1−𝑘
𝑛+𝑚−1

𝑘=𝑛

 

Or more simply: 

p =   ∑ (
𝑛 + 𝑚 − 1

𝑘
) (

1

21
)

𝑘

(
20

21
)

𝑛+𝑚−1−𝑘𝑛+𝑚−1

𝑘=𝑛

 

 

To find only the probability that n Bitcoin blocks occur before a single VeriBlock block, a 

simpler equation can be used: 

p =   (

1
600

1
600

  +  
1

30

)

𝑛

=    (
1

21
)

𝑛

 

To illustrate these probabilities:  

Probability 
n Bitcoin 

Blocks 
Before m 

VeriBlock Blocks 

0.0476 1 1 

0.0023 2 1 

0.0001 3 1 

0.0000 4 1 

0.0930 1 2 

0.0066 2 2 

0.0004 3 2 

0.0000 4 2 

0.1362 1 3 

0.0128 2 3 

0.0010 3 3 

0.0001 4 3 

0.1773 1 4 

0.0206 2 4 

0.0019 3 4 

0.0002 4 4 

0.2538 1 6 

0.0406 2 6 

 

Probability 
n Bitcoin 

Blocks 
Before m 

VeriBlock Blocks 

0.0050 3 6 

0.0005 4 6 

0.3861 1 10 

0.0937 2 10 

0.0172 3 10 

0.0026 4 10 

0.5190 1 15 

0.1754 2 15 

0.0445 3 15 

0.0092 4 15 

0.6231 1 20 

0.2642 2 20 

0.0847 3 20 

0.0220 4 20 

0.0049 5 20 

0.0009 6 20 

0.0002 7 20 

0.0000 8 20 
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4.4   Expected Relative VeriBlock Block per Bitcoin Block Occurrences 

As both the creation of Bitcoin and VeriBlock blocks exist as Poisson processes, the 

probability p that n VeriBlock blocks occur before m Bitcoin blocks (assuming the difficulty of 

both networks matches their current hashrate) can be modeled as: 

p =   ∑ (
𝑛 + 𝑚 − 1

𝑘
) (

1
30

1
30

  +  
1

600

)

𝑘

(

1
600

1
30

  +  
1

600

)

𝑛+𝑚−1−𝑘
𝑛+𝑚−1

𝑘=𝑛

 

Or more simply: 

p =   ∑ (
𝑛 + 𝑚 − 1

𝑘
) (

20

21
)

𝑘

(
1

21
)

𝑛+𝑚−1−𝑘𝑛+𝑚−1

𝑘=𝑛

 

 

To find only the probability that n VeriBlock blocks occur before a single Bitcoin block, a 

simpler equation can be used: 

p =   (

1
30

1
30

  +  
1

600

)

𝑛

=    (
20

21
)

𝑛

 

To illustrate these probabilities: 

Probability 
n VeriBlock 

Blocks 
Before m 

Bitcoin Blocks 

0.9524 1 1 

0.9070 2 1 

0.8227 4 1 

0.6768 8 1 

0.4810 15 1 

0.3769 20 1 

0.2314 30 1 

0.0872 50 1 

0.0076 100 1 

0.9977 1 2 

0.9934 2 2 

0.9794 4 2 

0.9347 8 2 

0.8246 15 2 

0.7358 20 2 

0.5619 30 2 

0.2948 50 2 

0.0438 100 2 

 

Probability 
n VeriBlock 

Blocks 
Before m 

Bitcoin Blocks 

0.9999 1 3 

0.9996 2 3 

0.9980 4 3 

0.9899 8 3 

0.9555 15 3 

0.9153 20 3 

0.8059 30 3 

0.5470 50 3 

0.1309 100 3 

0.9999 1 4 

0.9999 2 4 

0.9998 4 4 

0.9987 8 4 

0.9908 15 4 

0.9780 20 4 

0.9298 30 4 

0.7551 50 4 

0.2719 100 4 
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4.5   Expected  Relative Altchain Block per VeriBlock Block Occurrences 

As both the creation of (most types of) Altchain blocks and all VeriBlock blocks exist as 

Poisson processes, the probability p that n Altchain blocks with a target time of t occur 

before m VeriBlock blocks (assuming the difficulty of both networks matches their current 

hashrate) can be modeled as: 

p =   ∑ (
𝑛 + 𝑚 − 1

𝑘
) (

1
𝑡

1
𝑡

  +  
1

30

)

𝑘

(

1
30

1
𝑡

  +  
1

30

)

𝑛+𝑚−1−𝑘
𝑛+𝑚−1

𝑘=𝑛

 

 

To find only the probability that n Altchain blocks occur before a single VeriBlock block, a 

simpler equation can be used: 

p =   (

1
𝑡

1
𝑡

  +  
1

30

)

𝑛
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5    PoP vs PoW Mining Market Comparison  
While the incentivization mechanism of PoP is similar to that of PoW, the instantaneous 

nature of the mining market must be taken into account to optimize the security profile PoP 

can provide. 

Generally, PoW (Proof-of-Work) miners make medium- or long-term investments (directly or 

otherwise) into mining hardware. As a result, they experience and respond to two 

fundamentally different costs: the initial costs of hardware purchase, and the instantaneous 

(or in the case of most large-scale PoW mining operations, semi-instantaneous) costs of 

hardware operation. 

In contrast, PoP miners experience a market which highly resembles that of only the 

instantaneous costs of PoW miner hardware operation without the initial investment into 

any sort of mining hardware, and where electrical/cooling/etc. costs are roughly the same 

for all participants. 

 

5.1   PoW Reward Market 

Despite the initial costs of hardware purchase being comparatively large, the instantaneous 

costs of hardware operation over a period in which a PoW miner can reasonably respond to 

changes in the PoW mining market (on the order of minutes to days) are highly subject to 

instantaneous profitability; if a PoW miner spends 
𝑥

𝑑𝑎𝑦
 and receives 

𝑦

𝑑𝑎𝑦
 as a result, the PoW 

miner is expected to only continue operations if x > y.  
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In the above graph, the PoW miner in question is expected to mine at all times except the 

grey-shaded region, as IR ≥ 𝐼C (miner covers the cost to operate their equipment). 

It should also be noted that IC is shown as a flat line, although IC can fluctuate over time (not 

needing to run cooling as much at night, electrical costs fluctuating based on time of day, 

etc.) 

 

In the above graph (with profitability, operation timespan, IR jitter, etc. synthetically 

selected to demonstrate key behaviors in a normal single PoW miner’s cost-reward-market 

response), even when the instantaneous reward drops below CC (over an expected viability 

period of three years), mining continues (only ceasing when IR drops below IC). 

PoW miners must choose a point on the 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑠𝑡

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡
 curve, where a higher initial_cost 

generally results in a lower operation_cost (higher-density and/or higher-power-efficiency), 

and, similarly, a lower initial_cost generally results in a higher operation_cost: 
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This (in addition to varying electrical, labor, etc. costs in different regions) results in many 

PoW miners having different instantaneous costs (IC) from each other, enabling some PoW 

miners to remain above operational break-even while other PoW miners fall below 

operational break-even (which reduces competition, causing IR to correct upwards): 

 

 
 

Note that in the above graph, there is no period during which no PoW mining occurs (when 

IR > 𝐼𝐶1, all three PoW miners are active, when 𝐼𝐶1 > IR > 𝐼𝐶2, two out of three PoW 

miner are active, and when  𝐼𝐶2 > IR > 𝐼𝐶3, one out of three PoW miners are still active. 

When IR drops below IC1, the PoW miner using IC curve IC1 will leave, allowing the PoW 
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difficulty to adjust (over time) to pay out a higher reward per hash computed, etc. Only 

extremely rapid changes in IR will result in no miners being profitable to operate.  

It should be noted that this simplified market approach does not factor in a PoW miner 

leaving when IR > IC in the event that the local IR is smaller than another external IR (such as 

mining a different blockchain), however such an exodus of mining power has the same result 

on the market: IR will adjust accordingly, offering additional incentive for those miners who 

continue to mine the blockchain in question). A more general approach would introduce 

another value (“Opportunity Cost”, or “OC”), and assume a PoW miner will leave when IR 

drops below the highest of either OC or IC. 

As the result of commitments for short-term and semi-short-term costs (minimum electrical 

consumption contracts, employee compensation, floorspace rental, etc.), most large-scale 

PoW miners are subject to an alternative ‘semi-instantaneous’ cost market, where one or 

more interval costs compound into a cost curve which substitutes for the normal 

instantaneous cost market which small-scale PoW miners experience. The detailed 

exploration of such a semi-instantaneous cost market for PoW mining is beyond the scope of 

this document, as the optimal behavior of large-scale PoW mining operations (continuing 

operation when profitable) is even less similar to the instantaneous cost market as small-

scale PoW mining, to which we are contrasting the nearly-completely-instantaneously-cost-

market-based PoP mining.   

 

5.2   PoP Reward Market 

The PoP reward market is distinctly different than the PoW reward market; PoP miners 

invest an immediate cost—the price (transaction fee per byte) of a Bitcoin transaction—and 

receive a short-term return: PoP miners spend 
𝑥

𝑃𝑜𝑃 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 and receive 

𝑦

𝑃𝑜𝑃 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
. 

Therefore, their mining behavior is expected to closely model that of a PoW miner’s 

instantaneous profitability; a PoP miner is expected to only mine whenever x > y. 

Because there is no initial cost, there is no initial-cost-vs-operating-cost relationship. As a 

result, the “most efficient” or most economically-viable PoP miners will all have an identical 

(for practical purposes) IC, and therefore will generally be expected to all start or stop 

mining simultaneously: 
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In the above graph, all optimal PoP miners share IC and IR (ignoring external incentives like 

deriving additional benefit from PoP mining at a particular time to protect their own 

transactions), so PoP mining can’t expect to rely on some PoP miners ceasing mining before 

others (as is regular for PoW). The grey-shaded areas above demonstrate the times during 

which PoP mining is expected to temporarily cease. For illustration purposes IC is 

represented as a flat line, although changes in the price of Bitcoin and the fee level will result 

in changes to IR. 

It should be noted that this simplification does not account for proprietary algorithms for 

predicting optimal Bitcoin transaction fees; it is assumed that optimal algorithms will 

become public for determining the minimum required Bitcoin (or alternate security-

providing blockchain) transaction fee per byte (or per weight unit in the case of Segwit-

enabled transactions) to maximize PoP rewards given the probabilities of inclusion in the 

next n Bitcoin blocks and the reward curve for compensation of the PoP publication’s 

inclusion in the next n Bitcoin blocks. It should also be noted that it is assumed that Bitcoin 

blocks are full (thereby ensuring that PoW miners of Bitcoin don’t experience a (practically) 

zero fee for including their own PoP publications), or that the minimum relay fee is zero or 

nearly zero. It should be noted that empty free block space would always be used up by PoP 

miners (who would begin to competitively bid with each other) as long as y > 0.  

PoP also has a different security desire than PoW; while PoW generally aims to maximize the 

total reward paid in a particular short-term interval (maximize the total number of hashes 

performed on behalf of the blockchain in that time), PoP instead aims to minimize the length 

of periods of time during which PoP mining ceases to occur. While the VeriBlock blockchain’s 

implementation of PoP (and PoP implementation suggestions for altchains) is resistant to 

multi-block publication gaps (see section 6.2 regarding keystones), these publications must 

occur at a certain frequency to maintain full security of the protocol. As a result, PoP gains a 
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higher benefit from the consistency of publications in a period of time, rather than the total 

quantity of publications. 

In order to minimize the length (in blocks, or ‘time’) of each period where IR < IC, an 

artificial “jittering” mechanism is introduced which causes IR to “jitter” more than is simply 

caused by changes in the security-providing (Bitcoin, in the case of VeriBlock) blockchain fee 

market, fluctuations in the exchange rate between the native coin of the SI chain and the 

native coin of the SP chain, and the adjustment over time of the “PoP Difficulty” (which 

alters the expected reward per PoP based on recent historical data of the quantity of PoP 

publications in a similar fashion to how PoW difficulty alters the difficulty of finding a valid 

solution [or more simply for our purposes, the expected reward per hash] to the PoW 

challenge). 

 

 

The above graph demonstrates the value of IR jitters in reducing the width of PoP 

unprofitability time periods (shaded grey), which provides PoW security inheritance with 

shorter maximum and average dark periods.  

Different-sized jitters are introduced at varying intervals, which further ensure that periods 

of particularly low IR relative to IC will still often experience brief bursts of PoP mining to 

further increase the average timeliness of PoP publications. The details of the introduced 

jitter for VeriBlock, as well as suggestions for altchain PoP implementations, are explored in 

section 6.6. 
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6     Proof-of-Proof Technical Overview  
At a high level, Proof-of-Proof involves incentivizing a new form of miner—a PoP miner—to 

publish data from the SI blockchain to the SP blockchain for the SI blockchain to reference in 

the future in the event of an alternate proposed history.  

 

6.1    Desirable Proof-of-Proof Protocol Traits  

Proof-of-Proof is designed to exhibit the following desirable traits: 

1. The failure of one or several consecutive SI blocks to get published in the SP blockchain 

should not compromise the security of the SI blockchain 

2. An attacker generating an alternate history fork of the SI blockchain should be required 

to regularly announce the state of their chain to the SP blockchain in a timely fashion 

3. An attacker should not be able to “purchase” a higher rating for their competing SI fork 

than the legitimate SI fork receives based on publications in the SP blockchain (ex: the 

number of PoP publications of a particular SI block should not be a multiplier for the 

PoP score of that block) 

4. The fork resolution algorithm (means by which the SI chain resolves consensus and 

determines the legitimacy of a proposed fork based on publications on the SP chain) 

should eventually and predictably reach finality, where the lack of publications of a 

competing SI chain up to SI height ‘n’ in the SP blockchain ensures that the SI chain 

cannot be forked back before ‘n’ without the attacker being required to reorganize the 

SP (and by extension, any other upstream SP) as well 

5. The fork resolution algorithm should introduce limited overhead for SPV clients, and 

should ensure that an SPV client can maintain full security knowledge if connected to 

at least one non-byzantine node  

6. The reward scheme for PoP miners should not incentivize SI (PoW, PoC, PoS, etc.) or 

SP PoW miners to censor PoP miner activity, even if they themselves are also engaged 

in the PoP mining process 

Note that the PoP publications of an SI chain should contain the chain’s “Proof-of-X” in a self-

contained fashion (for example, a PoW blockchain will publish an entire block header, not just 

a block hash, a PoS blockchain will publish a proof of funds or proof of validator set 

participation depending on the flavor of PoS, …). This allows the difficulty of the Proof-of-X 

algorithm to act as an anti-spam mechanism and prevent a malicious party from publishing 

“spam” PoP transactions that could artificially trigger early-attack-detection metrics and lead 

users of the blockchain to falsely believe there may be a pending threat despite the attacker 

not actually producing the blocks they are announcing. See chapter 10 for additional 

countermeasures to false EAD triggering by minority hashrate actors. 
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6.2    Keystoning  

To prevent a lack of publication for several contiguous SI blocks from compromising the SI 

blockchain’s security, we introduce a form of block reference braiding referred to as 

“keystoning” into the SI blockchain, and introduce a need for publication continuity in the fork 

resolution algorithm (see sections 6.3 and 6.4).  

In keystoning, “keystone” blocks occur at a regular interval (unless experimental dynamic 

keystoning is employed, see section 10.5), and act as the backbone of long-range consensus 

resolution. All blocks (including keystones themselves) reference a number of previous 

keystones, allowing the publication of one block’s state data (which includes its keystone 

references) to provide context for a large section of the SI blockchain.  

Three keystone parameters dictate the properties of a blockchain’s keystoning: the keystone 

interval, the number of referenced keystones, and the keystone finality delay. 

 

Keystone Parameters 

Parameter Description Useful Range 

keystone_interval (i) 

The interval between keystone 
blocks. For example, a blockchain 

with a keystone interval of 20 
would have keystones  

{0, 20, 40, …}. This addresses the 
desirable protocol trait #2 

2 ≤ i < ∞ 

num_referenced_keystones (r) 
The number of previous keystones 

which each block references.   
2 ≤ r < ∞ 

keystone_finality_delay (d) 

The maximum number of SP blocks 
that can occur without a 

publication of an additional SI 
keystone before “continuity” is lost 
(future publications of that fork are 
not considered for fork resolution, 
further explained in section 6.4). 

This addresses the desirable 
protocol trait #4. 

2 ≤ d < ∞ 

 

The selected keystone parameters have a significant effect on the SI blockchain’s security 

profile. If a SI blockchain has a keystone_interval i and num_referenced_keystones r, the 

maximum number of blocks that the SI blockchain can go without a publication to the SP 

blockchain is approximately i*r (depends on whether the most recently published block was a 

keystone, just after a keystone, or farther into the keystone period) to maintain security. 
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Given keystone_interval i and num_referenced_keystones r, block references will follow the 

pattern (referencing the immediately preceding block, then r previous keystones): 

Keystoning Block Reference Pattern 

Block Number Reference Pattern 

ni 

{ni − 1, 
 (n − 1)i,   

…, 
 (n − r)i} 

ni + 1 

{ni, 
(n − 1)i, 

…, 
├(𝑛 − 𝑟┤)i} 

ni + m     where 1 < m < ni 

{ni + m − 1, 
ni, 
…, 

├(𝑛 − 𝑟 + 1┤)i} 
 

For example, a blockchain with i=5 and r=2 would have the following keystone references: 

Keystoning Block Reference Pattern Example    i=5 r=2 

Block Number Reference Pattern 

65 64,  60,  55 

66 65,  60,  55 

67 66,  65,  60 

68 67,  65,  60 

69 68,  65,  60 

70 69,  65,  60 

71 70,  65,  60 

72 71,  70,  65 

73 72,  70,  65 

 

Or visually: 
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VeriBlock uses keystone parameters i=20, r=2, d=11. Note that these values should not be 

used by an altchain; they’re based on Bitcoin’s (the SP blockchain for VeriBlock) properties. 

Because VeriBlock provides more storage space than Bitcoin does in its OP_RETURN, it is 

reasonable to publish additional context headers and/or implement another proofing 

mechanism for preventing false Early Attack Detection [see chapter 10]). The r=2 value was 

chosen for VeriBlock due to the space constraints of OP_RETURN on Bitcoin. There is a trade-

off in the time until finality with longer keystone block reference patterns. Additionally, 

VeriBlock’s 30-second blocktime must be taken into account. 

 

6.3    Reduced Publication View  

Based on the publications of the SI chain in the SP chain, a “reduced publication view” can be 

constructed with only the information relevant to consensus resolution. 

The following algorithm is used for constructing a reduced publication view of a chain: 

1. If calculating a reduced publication view in order to resolve a fork, ensure that the view 

of the SP blockchain accounts for knowledge contained in both forks (add all SP data 

from both chains to the SP SPV view, and remove any SP information not in the final 

main SI chain when finished with fork resolution) 

2. Determine the last “stable” keystone (in the case of comparing two forks, this is the 

highest keystone shared by both chains) 

3. For each keystone after the “stable” keystone: 

a. gather all of the publications in the SI chain which connect said keystone to the 

previous keystone 

b. Remove from the set of gathered publications any publications which are not 

in the best SP chain 

c. Select the publication with the lowest SP block height (if multiple have the 

same SP block height, select one of them; the particular one selected is not 

relevant), this is the best publication for that particular keystone 

d. Associate the keystone with the SP publication height of that best publication 

 

Now the ordered list of associations of keystones with their lowest SP publication heights 

comprises the reduced publication view of that chain. 

Take, for example, the following publication scenario (with SI i=3, r=2, d=(irrelevant) 

[arguments chosen for purposes of example; not recommended]: 
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Note that the keystone parameter i=3 is unoptimal for most SI chains. Generally, shorter blocktimes 

will be accompanied by larger interval sizes. 

 

Constructing a reduced publication view of the above scenario would yield the following: 

 

 

6.4    Publication Continuity Filtering  

In order to force a potential attacker to give full public continuity visibility of their attacking 

chain while it’s being built, the fork resolution algorithm (covered in 6.5) requires a chain to 

maintain publication continuity for its publications to be valid for fork resolution. 

Continuity of an SI chain is achieved if the connectivity of every keystone in a chain can be 

resolved based purely on publications in the SP chain. 

The example publication scenario in 6.3 can have a few publications removed while 

maintaining continuity. For example, the following publication scenario retains continuity: 

 

Based on publications in SP, SI keystone 60 is linked to 57 by publication of SI block 62’s state 

info (in SP block 63), SI keystone 63 is linked to 60 by publication of SI block 63’s state info (in 

SP block 64), SI keystone 66 is linked to 63 by publication of SI block 68’s state info (in SP block 

69), and SI keystone 69 is linked to 66 by publication of SI block 70’s state info (in SP block 71). 

However, removing any of the publications displayed would cause SI to lose continuity. Note: 

it is assumed that the blockchain’s reward structure will incentivize publication beyond the 

“bare minimum” displayed above. 

The corresponding reduced publication view would be: 
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However, if a publication were to be removed, for example: 

 

Then the reduced publication view would have a gap: 

 

And the filtered reduced publication view would only consist of: 

 

 

6.5    Fork Resolution  

When a fork is proposed to a SI blockchain, it responds by comparing both potential forks (the 

proposed fork, and the existing chain) based on their publications to the SP blockchain. This 

comparison is based only on the timeliness and continuity of the publications, as the 

frequency/volume (beyond expected minimums) can be controlled by an attacker. 

Fork resolution relies on a fork_resolution_publication_latency_lookup_table, which will be 

specified for each SI blockchain based on the parameters of the particular SI and SP chains.  

This lookup table should have a short plateau at the beginning (which allows blocks which 

were produced “around the same time” to share the same weighting, which prevents 

opportunistic attackers with minimal hashrate from attempting to generate the next keystone 

block slightly faster than the normal network and spam short reorgs), but then should 

aggressively weight keystone publications which fall outside of this grace period. 
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For example, an SI chain inheriting PoP security through VeriBlock might consider the 

following (where amnesty_period represents the “grace period” of publications of the SI chain 

to VeriBlock, based on the SI difficulty adjustment algorithm, publication frequency, expected 

publication frequency, etc.): 

 

Example fork_resolution_publication_latency_lookup_table 

VBK Publication Timeliness Fork Resolution Weighting 

0 ≤ publication_timeliness < 
amnesty_period 

1 

amnesty_period ≤ 
publication_timeliness < 
keystone_finality_delay 

1

(𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑒𝑠 − 𝑎𝑚𝑛𝑒𝑠𝑡𝑦_𝑝𝑒𝑟𝑖𝑜𝑑)1.03
 

keystone_finality_delay ≤ 
publication_timeliness 

0 

 

The aggressiveness in the SI block production difficulty adjustment algorithm for preventing 

attackers with significantly more than 51% power from producing blocks significantly earlier 

than the “legitimate” network should be considered in determining how aggressive this 

lookup table is in lowering the score  

 

The recommended PoP fork resolution algorithm consists of: 

1. Process both forks (referred to as ‘left’ and ‘right’) into their filtered reduced 

publication view as explained in sections 6.3 and 6.4 (sanity check: both filtered 

reduced publication views should start at the same keystone) 

2. Let first_ks = the first keystone number of the filtered reduced publication views, and 

let last_ks = the last keystone number of the longest filtered reduced publication 

view 

3. Let left_fork_score and right_fork_score = 0 

4. Let continue_scoring_left_fork and continue_scoring_right_fork = true 

5. For each keystone keystone_for_consideration between first_ks and last_ks: 

a. If continue_scoring_left_fork, then let left_fork_keystone_publication = the 

publication index in the SP blockchain for the keystone_for_consideration for 

the left chain (otherwise set it to a very high value, like 1,000,000,000). In the 

special case where the timestamp of the SP block the 

keystone_for_consideration is published to is lower than the timestamp of the 

keystone_for_consideration, then let left_fork_keystone_publication = the 

first SP block which is both higher than the block height of the first SP block 
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to contain a publication of the keystone_for_consideration and has a higher 

timestamp than that embedded in keystone_for_consideration 

b. If continue_scoring_right_fork, then let right_fork_keystone_publication = the 

publication index in the SP chain for the keystone_for_consideration for the 

right chain (otherwise set it to a very high value, like 1,000,000,000). In the 

special case where the timestamp of the SP block the 

keystone_for_consideration is published to is lower than the timestamp of the 

keystone_for_consideration, then let right_fork_keystone_publication = the 

first SP block which is both higher than the block height of the first SP block 

to contain a publication of the keystone_for_consideration and has a higher 

timestamp than that embedded in keystone_for_consideration 

c. Let lowest_keystone_publication = min(left_fork_keystone_publication, 

right_fork_keystone_publication) 

d. Let left_fork_keystone_publication_delay = (left_fork_keystone_publication – 

lowest_keystone_publication), and let right_fork_keystone_publication_delay 

= right_fork_keystone_publication – lowest_keystone_publication 

e. If left_fork_keystone_publication_delay is greater than the SI chain’s 

configured keystone_finality_delay, then set continue_scoring_left_fork = 

false 

f. If right_fork_keystone_publication_delay is greater than the SI chain’s 

configured keystone_finality_delay, then set continue_scoring_right_fork = 

false 

g. Add the value from the publication latency lookup table corresponding to 

left_fork_keystone_publication_delay to left_fork_score 

h. Add the value from the publication latency lookup table corresponding to 

right_fork_keystone_publication_delay to right_fork_score 

6. If left_fork_score is greater than right_fork_score then the left fork is better. If 

right_fork_score is greater than left_fork_score then the right fork is better. If both 

scores are equal, then the chains are equally valid, and similar to most other 

consensus protocols, whatever blockchain is currently valid should remain valid 

unless another chain surpasses its score in the future 

Note that the algorithm above uses the keystone_finality_delay for determining when one 

chain significantly outpaces another. Chains may optionally choose to adopt a 

keystone_finality_delay which is different from the maximum lag keystones at a particular 

height are allowed relative to a competing chain. In that event, the higher of the two 

numbers (measured in SP blocks) will represent when the lack of publications of an attacking 

chain can confirm finality for the challenged chain at a particular keystone height. 
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To maximize the security profile of Proof-of-Proof in a variety of adversarial conditions, the 

recommended SI fork resolution algorithm described above is based on the following 

favorable properties: 

• Only the timeliness of publication of keystone block references is considered (all 

publications reference at least one keystone) 

• Publications of all or most blocks are not assumed, and cannot be artificially done 

above fee market states to “buy” a high score for an attacking chain 

• After the keystone_finality_delay is passed without publication of an attacking chain 

at a particular height, the fork resolution algorithm won’t possibly choose another 

chain as valid unless the SP blockchain (and in tandem, any upstream SP blockchains) 

experience forks 

• The amount of data and processing required to run the full fork resolution algorithm 

is minimal and reasonable for SPV clients (and in the case of VeriBlock, altchains which 

are secured to VeriBlock and thus must validate VeriBlock in an SPV-like manner) 

 

6.6    Proof-of-Proof Reward Scheme  

While the magnitude of the rewards will vary widely based on the SI blockchain, the block 

mining algorithm(s) it employs, its maturity, and market projections, all SI blockchains will 

have some budget to allocate per unit-time. 

Rather than allocate a fixed amount of rewards per-block, it is recommended that SI 

blockchains allocate their PoP security budgets such that they incentivize publication of blocks 

in a way that is most beneficial to the SI blockchain’s security, and that minimizes any potential 

conflicts-of-interest for people simultaneously engaged in SP block creation and SI PoP mining 

(see section 7.3 for additional discussion). 

Due to the keystoning structure, publications of the keystone block itself are the most valuable 

to the altchain’s consensus, and publications of the blocks following it are decreasingly 

valuable (they have a lower likelihood of being published to the earliest-possible SP block than 

the keystone block itself). 

Because PoP transactions occur necessarily after the blocks they protect (including the block 

header they publish), PoP payouts are calculated after a sufficient delay (in SI blocks, generally 

set to take ~4+ hours after the occurrence of the published block) to ensure all SP transactions 

done on behalf of the SI chain have cleared, and that neither the SP chain nor any upstream 

SP chains are likely to experience a reorganization. An SI blockchain protocol will decide on 

the following variables to use for PoP score calculation: 
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PoP Payout Parameters 

Parameter Description 
Value 

Recommendation 

pop_reward_settlement_interval 

The number of SI blocks 
following the PoP’d block for 
which a PoP endorsement of 
that block can occur 

4-8 hours of SI 
chain blocks 

pop_reward_payment_delay 
The number of blocks after the 
PoP’d block to wait before 
performing PoP payout 

Generally, 1.25 * 
pop_reward_ 
settlement_interval 

pop_relative_score_lookup_table 
An associative function scoring 
PoP publications by their 
timeliness in the SP chain 

See below 

 

 

The pop_relative_score_lookup_table is a function which maps a particular 

publication_timeliness delay in SP blocks to a score for the PoP transaction. Note that each 

value is based off of the offset from the first publication (ex: if the first PoP publication of SI 

block 100 is in SP block 1000, then each key in the lookup table will start at 0 and be based on 

tardiness in the SP chain relative to SP block 1000). Also note that this is the relative scoring 

for payout calculation, not for the relative weighting used in the fork resolution algorithm. 

Generally, this curve should be more aggressive than the fork resolution lookup table, as the 

purpose of the payout curve is to incentivize rapid publication, rather than determine SP-

finality for the SI chain. 

Generally, something similar to the following table is recommended for altchains inheriting 

security from the VeriBlock blockchain: 

Example pop_relative_score_lookup_table 

VBK Publication Timeliness PoP Reward Score 

0 ≤ publication_timeliness < 10 1.000 

10 ≤ publication_timeliness < 50 
1

(𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 − 10)1.05
 

50 ≤ publication_timeliness 0 

 

This allows any publication in the first ~5 minutes (10 VBK blocks) to receive the same reward 

(and disincentivizes any VBK PoW miners who are also PoP mining for the particular altchain 

from censoring others’ PoP transactions in an attempt to increase their reward), while still 

providing a “long tail” of smoothed but rapidly-deteriorating rewards for those with less 
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competitive VBK fees. Note that the sum of all PoP reward scores will be used later in 

calculating the payouts, which will reward PoPs based on the total number of PoPs for a 

particular block and the number of PoPs for previous recent blocks. 

In addition to the existing difficulty (PoW, PoC, PoS, etc.) for the block mintage protocol, PoP 

introduces an additional PoP difficulty (pop_difficulty or pDiff). This PoP difficulty reflects the 

recent PoP scores of blocks in the SI blockchain, and functions as a means of regulating PoP 

payouts and allowing fluctuations in the SP fee market to be priced into the SI blockchain’s 

PoP mining rewards. 

After pop_reward_settlement_interval SI blocks pass after a particular block, the PoP score for 

that particular block can be calculated by summing up the values from 

pop_relative_score_lookup_table corresponding to each PoP transaction (which proofs to the 

best-known VeriBlock blockchain) endorsing the particular block. This PoP score is itself fed 

into a function which determines the altchain coin-per-PoP-score which will be paid out for 

that particular block. Note that many SI chains may opt to pay larger PoP rewards in particular 

blocks that are more valuable for consensus, and pay smaller (or zero) PoP rewards for other 

blocks. 

For blocks which have a lower PoP publication score than the current pop_difficulty, the total 

reward paid out will be lower than the expected average payout-per-block. Accordingly, blocks 

with a higher PoP publication score than the current pop_difficulty will pay out a total reward 

that is larger than the expected average payout-per-block. Over time, the rewards paid for 

PoP will average out to the expected per-block payout. 

A recommended reward schedule is shaped as follows: 
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Note that pDiff is short for pop_difficulty. Three distinct sections to this rewards curve exist. 

The first section of the reward curve is a horizontal reward curve, which pays out a fixed 

expected-higher-than-market (for blocks paying a high PoP reward) amount. For example, if 

the pop_difficulty is 100, then a block with a PoP reward score of 1 would pay out the same 

coins-per-PoP-point as a block with a PoP reward score of 2. This disincentivizes block miners 

on the SP and the SI chains from attempting to prevent competing SI PoP endorsements from 

completing. In most cases (SI blocks that are priced to pay for endorsements of themselves, 

rather than just act as an extreme market condition detector), rewards-per-point on this 

horizontal section will be above the breakeven of the transaction fees an SI blockchain PoP 

miner would pay on the SP chain. 

The second section of the reward curve provides a linearly-decreasing reward-per-PoP-point, 

which allows the total transaction fees paid by SI blockchain PoP miners to naturally settle 

based on the current SP blockchain fee market situation. In most cases (SI blocks that are 

priced to pay for endorsements of themselves), the PoP mining breakeven (based on 

transaction fees SI blockchain miners pay on VeriBlock) will occur somewhere in this section 

(and during stable market conditions, will be very close to pDiff). The total “pie” of shared 

rewards by PoP miners of the particular rewarded block continues to increase throughout this 

section. 

The third section will generally only be encountered in times of extreme market fluctuations 

(in the VeriBlock fee market and/or the value ratio between VBK and the SI blockchain’s native 

coin), and places a cap on the total reward a block will pay out (the total “pie” of shared 

rewards by PoP miners of the particular rewarded block stays fixed at any point in this section). 

SI blockchains should have different blocks which have different reward curves (either just 

shifted/stretched versions of the same curve, or curves with different overall shapes). This 

introduces the jittering discussed in section 5.2. A reward curve which exists entirely below 

the expected PoP mining breakeven line is expected to only be published in the event that the 

SP fee market drops in price drastically and/or the SI blockchain’s native coin appreciates 

significantly in value relative to the SP native coin in a short period of time. This allows the 

system to adjust to external market fluctuations more quickly (as publications of these blocks 

will cause pDiff to increase, lowering the per-PoP-reward for all blocks). 

Blockchains, particularly those with fast block times, may opt to only offer non-zero PoP 

payouts on a fraction of their blocks. This allows the altchain to provide a large reward pool 

less frequently, reducing the risk that the SI blockchain will be entirely priced out of the PoP 

market. 

An example of a normal PoP block reward curve (on a blockchain wishing to reward 100 SI 

coins for the particular rewarded block, never to exceed 125 SI coins): 
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In order to calculate the PoP rewards to pay out in a particular block (which rewards PoP 

miners who published the block pop_reward_payment_delay blocks ago): 

1. Let block_to_calculate_rewards_for = current_block – pop_reward_payment_delay 

2. Let pop_transactions_to_consider = the set of all PoP transactions (later referred to 

as ATV transactions; ones that demonstrate publication of a SI blockchain’s state to 

VeriBlock) which endorse block_to_calculate_rewards_for which exist in the interval 

(block_to_calculate_rewards_for, block_to_calculate_rewards_for + 

pop_reward_settlement_interval] 

3. Based on the altchain’s view of the VeriBlock blockchain current to the last applied 

(immediately-preceding) altchain block, remove all altchain PoP transactions from 

pop_transactions_to_consider which don’t publish to the best-known VeriBlock 

blockchain 

4. Let first_publication_index_in_veriblock = the index in the VeriBlock blockchain of the 

first PoP publication in pop_transactions_to_consider 

5. Let total_pop_score_for_rewarded_block = sum(each PoP transaction in 

pop_transactions_to_consider score based on its relative timeliness to 

first_publication_index_in_veriblock) 

6. Let reward_per_pop_point = the corresponding reward-per-point from the PoP 

reward curve for current_block 

7. Award (generally through the coinbase transaction, see section 6.7 for a discussion 

on alternative options) the PoP miner of each PoP transaction in 

pop_transactions_to_consider based on the corresponding timeliness of publication 

of the particular PoP transaction relative to first_publication_index_in_veriblock 
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It is generally recommended that altchains have one block in each keystone period 

(preferably towards the beginning of the keystone period) which splits out a fixed-size 

reward equally amongst all participants. While this does create an incentive for SP block 

miners to potentially censor SI transactions endorsing this block and collect the majority of 

the entire reward themselves (the censored SI transactions are still likely to be included in a 

future SP block), it acts as a hedge against extremely volatile fee market and price activity 

which could potentially exceed the protocol’s SP fee market discovery done by the PoP 

difficulty calculations. 

 

6.7    Alternatives to Coinbase PoP Payouts  

While most blockchains will generally opt to provide PoP payouts through the coinbase 

transaction, PoP payouts can also be done via a general smart contract on blockchains which 

support it. This “coinbase-like” smart contract could allow users to “top-up” the blockchain’s 

security budget, amongst other interesting features.  

Do note, however, that smart contracts may also pose a vulnerability because they could be 

used to artificially change or flatten the reward jittering and reduce the chain’s security 

profile by, paradoxically, providing additional rewards to PoP miners of low-reward rounds. 

Mitigation strategies for this involve blinding general smart contracts from being able to 

read the PoP information or having PoP mining occur with a special type of address only able 

to receive coins from a the PoP payout smart contract. This attack vector is one of the 

reasons the VeriBlock blockchain does not offer turing-complete smart contract scripts.  

 

7    VeriBlock Blockchain PoP Parameter Selection   
The VeriBlock blockchain is a concrete example of selecting the PoP protocol parameters 

explained in chapter 6. 

PoP miners acting on behalf of the VeriBlock blockchain network must be properly 

incentivized to: publish PoP data regarding the most recent VeriBlock block available to 

them, get their PoP publication in the Bitcoin blockchain in the next block, and return their 

PoP publication proof back to the VeriBlock blockchain as quickly as possible. 

The PoP mining market is permissionless and elastic. Anyone can elect to PoP mine at any 

time, and the direct cost associated with PoP mining (the paid Bitcoin transaction fee) can be 

configured by the PoP miner, with a direct effect on the PoP miner’s expected payout 

probability.  

Publication of a VeriBlock block header to Bitcoin as part of a PoP payload is incentivized 

with the payout scheme described in section 6.6. 
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7.1   Incentivizing Rapid Publication 

The ideal VeriBlock PoP miner publishes VeriBlock PoP data such that it occurs in the next 

Bitcoin block. While some edge-case scenarios exist in which this is impossible (due to a lack 

of global information availability because of propagation and processing latency, and Bitcoin 

PoW miners’ unique software and associated weightings and refresh rates for selecting a 

subset of their mempool for mining), there generally exists a known fee market within which 

all Bitcoin transaction originators (including VeriBlock PoP miners) participate. 

Fundamentally, this fee market provides a probability p with which a transaction with a fee f 

will make it into the next block (or the 2nd, or 3rd, … next blocks). To properly incentivize 

VeriBlock PoP miners to pay sufficient Bitcoin transaction fees, VeriBlock rewards are 

weighted such that the ratio of VeriBlock coins rewarded to Bitcoin fee spent is maximized 

when a PoP miner pays a sufficient (but not excessive) fee to make it into the next block. 

 

7.2   Incentivizing Return of PoP Data 

To receive compensation for a PoP publication to Bitcoin, the PoP miner must construct a 

proof that the PoP publication transaction has been included in the Bitcoin blockchain, and 

return that proof to the VeriBlock blockchain. 

Even if the PoP publication transaction does not get included in the next possible Bitcoin 

block (or, more formally, the first Bitcoin block in which any other PoP publication 

transaction which proves the same VeriBlock block occurs), a PoP miner is incentivized to 

return the PoP publication proof back to the VeriBlock blockchain if the block which the PoP 

publication is close enough to the first possible block to still be relevant to VeriBlock 

security. 

 

7.3   Disincentivizing Bitcoin PoW Miners from Censoring PoP Transactions 

Bitcoin PoW miners are modeled as rational economic actors whose goal is to maximize 

short-term profits. They are incentivized by the Bitcoin block reward, Bitcoin transaction 

fees, and additional external benefits they can acquire by selecting the data they include in 

their block.  

Because PoP publication transactions provide a monetary or pseudo-monetary reward 

external to the Bitcoin blockchain itself, they are considered to provide external incentives.  

Because Bitcoin PoW miners can also perform PoP mining for the VeriBlock blockchain, it’s 

possible that they would want to prevent publication of any PoP data in their Bitcoin block 

other than their own PoP publication if doing so would make their PoP publication more 

valuable. For example, if a fixed block reward was offered and split amongst the miners 

responsible for all valid timely publications of a particular VeriBlock block to Bitcoin, then a 

particular Bitcoin PoW miner would be incentivized to censor all other VeriBlock PoP miners 

for a range of the most recent VeriBlock blocks from entry into their Bitcoin block, allowing 
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them to be the only successful PoP miner at the first Bitcoin block index (and collect the 

majority of the reward). 

To prevent this behavior, VeriBlock’s reward mechanism is balanced to make a Bitcoin PoW 

miner’s most incentivized action to generally be to include most or all PoP transactions 

which are competitive in the regular Bitcoin fee market. 

The total PoP coinbase reward at a particular VeriBlock block n pays the PoP miners who 

endorsed VeriBlock block (n – pop_reward_delay_period). The (pop_reward_delay_period is 

500 VeriBlock blocks. These endorsements must be contained within the pop_settlement 

period of the block in question (400 VeriBlock blocks). For the first payment_delay_period 

blocks in the VeriBlock blockchain, there is no PoP coinbase. 

The VeriBlock blockchain has a floating reward mechanism which alters the payout for each 

VeriBlock block based on the volume of PoP transactions which endorsed recent VeriBlock 

blocks. The intuition for this process is similar to the difficulty of Bitcoin; in this case the 

“hashing power” is the number and timeliness of transactions, and the ‘difficulty’ alters the 

reward per publication with weight based on its timeliness (in the same way that difficulty in 

a PoW sense alters the reward per hash). Note that VeriBlock pays rewards to PoP 

publications in the first 8 Bitcoin blocks that PoPs for a particular VeriBlock block are 

published in (according to the following weight chart for reward distribution). 

 

PoP Difficulty Contribution and Reward Ratio (Based on 1/x2) 

Relative Bitcoin Block Multiplier 

1 1.000 

2 0.250 

3 0.111 

4 0.063 

5 0.040 

6 0.028 

7 0.020 

8 0.016 

 

As explained in section 6.6, a reward curve converts a PoP score (relative to its trailing 

average, which behaves like a difficulty) to a total block reward. This curve provides a 

maximum payout per PoP point, and ensures that that the total block reward for PoP miners 

stays at or below a particular value.   
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Section 5.2 explains a jittering mechanism used for price discovery and to strategically 

incentivize publication of sufficient context for the chain to maintain continuity.   

Recall: 
 

 

This curve (along with the PoP score reward weightings, finality periods, and the PoP reward 

share) produces a number of desirable traits: 

• Bitcoin PoW miners who censor others’ PoP transactions generally do so at a loss, 

even if they themselves are VeriBlock PoP miners 

• VeriBlock PoW miners are incentivized to include as many PoP transactions as 

possible, even if they themselves are VeriBlock PoP miners 

• PoP miners are incentivized to continue to PoP mine until roughly breakeven 

 

This reward scheme: 

• Incentivizes Bitcoin PoW miners who also participate in VeriBlock PoP Mining 

o Their own PoP transaction(s) earns a higher reward for including additional 

PoP transactions up to approximately the trailing difficulty 

o The slow descent of per-PoP reward after the trailing difficulty allows the 

Bitcoin blockchain fee market to function; PoP miners (particularly those who 

are using the OP_RETURN on a transaction they already planned to send) can 

pay fees which are higher than the Bitcoin PoW miner’s marginal losses from 

PoP for including their PoP transaction 

• Incentivizes standalone VeriBlock PoP miners 
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o Based on the current state of the mempool and efficiency of the Bitcoin fee 

market, they can make informed decisions regarding profitability of PoP 

mining 

o The ratio of reward:cost should be highest for PoP transactions in the next 

Bitcoin block (a fee would have to be 87.5% cheaper for 2nd block inclusion 

than 1st block inclusion), incentivizing PoP miners to pay adequate fees for 

speedy inclusion 

o Even if the VeriBlock PoP miner’s transaction does not make it into the next 

block, they still have a non-trivial incentive to return the publication to 

VeriBlock if it enters Bitcoin within the 6-block limit 

 

7.4   PoP Payout Round Multipliers / Reward Levels 

In order to introduce jittering to prevent long periods of profitability and unprofitability with 

no interruption (and to also offer higher incentives for blocks whose publication to Bitcoin 

results in a higher security profile, such as keystone blocks), different blocks have different 

payout multipliers. 

These payout multipliers double as a discovery mechanism for the VeriBlock blockchain to 

determine the profitability threshold for current PoP miners, which have the effect of 

properly setting the reward curves to near-cost to prevent censorship by Bitcoin PoW 

miners. Four levels of block payouts exist (1 through 4), with higher numbers corresponding 

to higher rewards.  

Rounds 1-3 use the same curve but apply different multipliers to it, and round 4 uses a 

similarly-shaped curve but with different segment length ratios. Rounds 2, 3, and 4 reward 

curves all offer a starting reward which will be above the Bitcoin fee market price when the 

fee market and exchange rates are stable. During times of increasing Bitcoin transaction 

costs relative to VBK, it is expected that rounds 2 and 3 may fail to be published, causing 

pDiff to drop (and thus, increasing the starting reward for future rounds). During times of 

decreasing Bitcoin transaction costs relative to VBK, it is expected that round 1 would get 

published, causing pDiff to increase, thus lowering the starting reward for future rounds. 

 

These payout multipliers are strategically placed to encourage several behaviors: 

• Always perform publications of keystone blocks, which operate in at Round-4 

payouts 

• Perform publications of alternating blocks (increasing the likeliness that a jagged 

Bitcoin fee market intersects with the VeriBlock jittering to produce profitable 

publications at a higher frequency) 
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• Alternate between expected up and down rounds for faster external ‘cost of proof’ 

discovery, along with Round-4 payouts every 20 blocks for keystone block rewards. 

 

Note that the adjustment of the reward level schedule does not happen immediately; the 

PoP difficulty changes on a delay to allow for all PoP transactions to come in; it is assumed 

that PoP miners will price in the expected changes based on other PoP transactions in 

Bitcoin and in the mempool (as the adjustment can be predicted with reasonable accuracy 

once one or two Bitcoin blocks occur). 

In order to robustly handle significant Bitcoin fee market changes or VBK:BTC trade ratio 

swings, every 4th block in a keystone period (blocks in the set {3, 23, 43…}) splits its total 

block reward amongst all PoP miners who publish it to Bitcoin (still using PoP scoring to rate 

the value of transactions relative to one another); if only one PoP transaction for this block 

occurs the PoP miner receives the full block reward.  

While publications of this block are subject to potential selective censorship by Bitcoin PoW 

miners (who want to claim the majority of the reward for themselves), it results in at least 

one block per keystone period being economically viable to PoP mine, even during times of 

significant Bitcoin fee market or exchange rate volatility. 
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7.5   VeriBlock Bitcoin Finality 

Due to the random nature of block generation time and asynchronous nature of distributed 

networks, simply the inclusion of the header of a VeriBlock block in the Bitcoin blockchain 

cannot be used to determine “Bitcoin-finality” (finality that is guaranteed unless a 

reorganization occurs on Bitcoin itself) for a particular VeriBlock block and all of its 

ancestors. 

As a result, an algorithm for relative score calculation must be introduced which determines 

which of a set of two or more possible chains is the most valid one. In order to determine 

the most valid chain (or the set of equally-valid chains for which additional information in 

the way of future blocks on one of the chains is required for tie-breaking), any two chains 

(each defined by their most recent block) must be comparable. 

 

One of the most important utilities of the VeriBlock blockchain’s consensus algorithm is to 

produce Bitcoin-finality for the VeriBlock blockchain (which in turn leads to Bitcoin-finality 

for blockchains secured to VeriBlock); at a certain point, a blockchain up to a particular 

height which has no competitors published to Bitcoin for a period of ‘time’ should become 

unbeatable unless Bitcoin itself experiences a reorganization. As such, a grace period 

(measured in Bitcoin blocks) must be provided such that a chain which is uncontested by 

publications in Bitcoin from a particular block height down should be immortalized as final 

(and chains which were once considered valid competitors should eventually become 

impossible if they do not produce new publications to Bitcoin within the finality period). 

Such a system forces any attacker to frequently publish the present state of an alternate 

chain they are building in order for their attacking chain to possibly be accepted by the 

network. 

However, such a finality window also creates the possibility for an attacker to produce a 

valid chain offline which, in the event that the “main” blockchain fails to make a presence in 

Bitcoin within the finality closure window, becomes a nuclear weapon; such a chain will 

always be considered more valid than the main chain, no matter how many blocks are built 

on top of the “main chain” and how many PoP publications of that blockchain get into 

Bitcoin at a later point in time. 

In order for such an attack to be successful, one of the following three incredibly unlikely 

events must occur: 

• Bitcoin miners demonstrate complete censorship of PoP transactions of the main 

VeriBlock chain while permitting PoP transactions which endorse an attacking 

VeriBlock chain to be included in the Bitcoin blockchain for the duration of the 

finality delay period 

• VeriBlock PoW miners successfully censor the VeriBlock main chain continually and 

prevent all valid PoP endorsements of the main chain from making it into later blocks 
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in the main chain (attack eventually fails if the attacker fails to maintain complete 

censorship control of the main chain) 

• No new VeriBlock keystone period on the main chain is produced during the entire 

duration of the finality period of Bitcoin blocks, but at least one new VeriBlock 

keystone period is produced privately and proofed to Bitcoin during the finality 

period 

The first scenario would demonstrate a complete failure of the Bitcoin blockchain to 

maintain a censorship-free transactional system; analogous to a majority hashrate attack 

wherein a single agent or multiple colluding agents control a majority of the hashrate. As a 

result, Bitcoin can no longer be relied upon for security which adheres to the principles of 

DTTP.  

The second scenario would only work for the duration of time that the VeriBlock PoW 51% 

attackers are able to maintain complete censorship over the main blockchain; eventually the 

valid PoP endorsements would become part of the main blockchain and the chain would no 

longer appear to the fork resolution algorithm to have a gap larger than the finality delay. 

The third scenario is a driving force between the block time and finality delay parameters of 

the VeriBlock protocol, which can be tweaked to make the probability of such an event 

occurring arbitrarily small (and have been selected to all-but-eliminate the possibility of such 

an anomaly). 

 

7.6   Block Time and Finality Delay Parameter Selection 

The probability p that n Bitcoin blocks occur before m VeriBlock blocks with a VeriBlock block 

time of t seconds (assuming neither network is in a period of hashrate fluctuation above or 

below that communicated by present difficulty) is: 

 

p =   ∑ (
𝑛 + 𝑚 − 1

𝑘
) (

1
600

1
600
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)
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A few tables demonstrating the probability of an entire finality period (n) passing before a 

particular number of VeriBlock blocks are produced (m={1, 3, 5, 10}) at particular block times 

(t) help with choosing acceptable values for all three variables when paired with realistic 

security delay expectations and real-world propagation performance on modern 

cryptocurrency networks. 
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Color           

Frequency 
(minimum) 

 
0  16.6 hrs  69 days  19 years  

1.9 
millennia 

Frequency 
(maximum) 

 
16.6 hrs  69 days  19 years  

1.9 
millennia 

 ∞ 

 

Probability of n Bitcoin Blocks Before m=1 VeriBlock Blocks vs VeriBlock Block Time 

 Number of Bitcoin Blocks (n) 
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  1 2 3 4 5 6 7 8 9 10 

15 1.2E-02 1.5E-04 2.0E-06 3.9E-07 3.1E-10 3.8E-12 4.8E-14 6.0E-16 7.5E-18 9.3E-20 

30 2.5E-02 6.3E-04 1.6E-06 2.0E-06 9.8E-09 2.4E-10 6.1E-12 1.5E-13 3.8E-15 9.5E-17 

45 3.8E-02 1.4E-03 5.3E-05 6.3E-06 7.4E-08 2.8E-09 1.0E-10 3.9E-12 1.5E-13 5.5E-15 

60 5.0E-02 2.5E-03 1.3E-04 6.3E-06 3.1E-07 1.6E-08 7.8E-10 3.9E-11 2.0E-12 9.8E-14 

90 7.5E-02 5.6E-03 4.2E-04 3.2E-05 2.4E-06 1.8E-07 1.3E-08 1.0E-09 7.5E-11 5.6E-12 

120 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 

 

 

Probability of n Bitcoin Blocks Before m=3 VeriBlock Blocks vs VeriBlock Block Time 

 Number of Bitcoin Blocks (n) 
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c)

  1 2 3 4 5 6 7 8 9 10 

15 3.6E-02 9.0E-04 1.9E-05 3.5E-07 6.1E-09 1.0E-10 1.6E-12 2.6E-14 3.9E-16 5.9E-18 

30 7.0E-02 3.5E-03 1.4E-04 5.4E-06 1.9E-07 6.3E-09 2.0E-10 6.3E-12 2.0E-13 5.7E-15 

45 1.0E-01 7.5E-03 4.7E-04 2.6E-05 1.4E-06 6.8E-08 3.3E-09 1.5E-10 7.0E-12 3.2E-13 

60 1.3E-01 1.3E-02 1.1E-03 7.9E-05 5.5E-06 3.7E-07 2.4E-08 1.5E-09 9.0E-11 5.4E-12 

90 1.9E-01 2.7E-02 3.3E-03 3.7E-04 3.9E-05 3.9E-06 3.7E-07 E.5E-08 3.2E-09 2.9E-10 

120 2.3E-01 4.5E-02 7.3E-03 1.1E-03 1.5E-04 2.0E-05 2.6E-06 3.2E-07 3.9E-08 4.7E-09 
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Probability of n Bitcoin Blocks Before m=5 VeriBlock Blocks vs VeriBlock Block Time 

 Number of Bitcoin Blocks (n) 

V
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K
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ck
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e
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 s

e
c)

  1 2 3 4 5 6 7 8 9 10 

15 5.8E-02 2.2E-03 6.3E-05 1.6E-06 3.5E-08 7.3E-11 1.4E-11 2.7E-13 4.9E-15 8.5E-17 

30 1.1E-01 8.0E-03 4.6E-04 2.3E-05 1.0E-06 4.3E-08 1.7E-09 6.3E-11 2.3E-12 7.9E-14 

45 1.5E-01 1.7E-02 1.4E-03 1.1E-04 7.2E-06 4.5E-07 2.6E-08 1.5E-09 8.0E-11 4.2E-12 

60 1.9E-01 2.8E-02 3.2E-03 3.1E-04 2.8E-05 2.3E-06 1.8E-07 1.4E-08 9.8E-10 6.8E-11 

90 2.6E-01 5.4E-02 9.2E-03 1.4E-03 1.8E-04 2.3E-05 2.6E-06 2.9E-07 3.2E-08 3.3E-09 

120 3.1E-01 8.5E-02 1.9E-01 3.7E-03 6.6E-04 1.1E-04 1.7E-05 2.5E-06 3.6E-07 5.0E-08 

 

 

Probability of n Bitcoin Blocks Before m=10 VeriBlock Blocks vs VeriBlock Block Time 

 Number of Bitcoin Blocks (n) 

V
B
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ck
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t,
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e
c)

  1 2 3 4 5 6 7 8 9 10 

15 1.1E-01 7.2E-03 3.5E-04 1.4E-05 5.0E-07 1.6E-08 4.4E-10 1.2E-11 2.9E-13 7.0E-15 

30 1.8E-01 2.4E-02 2.4E-03 1.9E-04 1.3E-05 8.1E-07 4.6E-08 2.5E-09 1.2E-10 5.8E-12 

45 2.4E-01 4.6E-02 6.6E-03 7.9E-04 8.2E-05 7.7E-06 6.5E-07 5.2E-08 3.9E-09 2.7E-10 

60 2.7E-01 6.9E-02 1.3E-02 2.1E-03 2.9E-04 3.6E-05 4.0E-06 4.3E-07 4.2E-08 4.0E-09 

90 3.2E-01 1.2E-01 3.2E-02 7.6E-03 1.5E-03 2.8E-04 4.8E-05 7.6E-06 1.1E-06 1.6E-07 

120 3.4E-01 1.6E-01 5.7E-02 1.7E-02 4.7E-03 1.1E-03 2.6E-04 5.3E-05 1.1E-05 2.0E-06 

 

Data from the last year shows Bitcoin block propagation times to 50% of publicly accessible 

nodes ranging from roughly 1000ms to 2000ms[1], making a 30-second block time (assuming 

slightly faster propagation speeds for VeriBlock due to the smaller individual block size) 

reasonable without significantly affecting the orphan rate of the network. 

The probability of particular strengths of non-majority-hashrate miners successfully 

censoring all VeriBlock PoP transactions for a period of time is also relevant to selecting the 

minimum number of Bitcoin blocks required for the finality delay: 
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Probability of h% Bitcoin Hashrate Miner Completely Censoring PoP for m Bitcoin Blocks 

 Number of Bitcoin Blocks (n) 

H
as

h
ra

te
 o

f 
A

tt
ac

ke
r 

(h
%

) 

 1 2 3 4 5 6 7 8 9 10 

1% 1.0E-02 1.0E-04 1.0E-06 1.0E-08 1.0E-10 1.0E-12 1.0E-14 1.0E-16 1.0E-18 1.0E-20 

5% 5.0E-02 2.5E-03 1.3E-04 6.3E-06 3.1E-07 1.6E-08 7.8E-10 3.9E-11 2.0E-12 9.8E-14 

10% 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 

15% 1.5E-01 2.3E-02 3.4E-03 5.1E-04 7.6E-05 1.1E-05 1.7E-06 2.6E-07 3.8E-08 5.8E-09 

20% 2.0E-01 4.0E-02 8.0E-03 1.6E-03 3.2E-04 6.4E-05 1.3E-05 2.6E-06 5.1E-07 1.0E-07 

25% 2.5E-01 6.3E-02 1.6E-02 3.9E-03 9.8E-04 2.4E-04 6.1E-05 1.5E-05 3.8E-06 9.5E-07 

30% 3.0E-01 9.0E-02 2.7E-02 8.1E-03 2.4E-03 7.3E-04 2.2E-04 6.6E-05 2.0E-05 5.9E-06 

35% 3.5E-01 1.2E-01 4.3E-02 1.5E-02 5.3E-03 1.8E-03 6.4E-04 2.3E-04 7.9E-05 2.8E-05 

40% 4.0E-01 1.6E-01 6.4E-02 2.6E-02 1.0E-02 4.1E-03 1.6E-03 6.6E-04 2.6E-04 1.1E-04 

45% 4.5E-01 2.0E-01 9.1E-02 4.1E-02 1.9E-02 8.3E-03 3.7E-03 1.7E-03 7.6E-04 3.4E-04 

 

Note that attempting such an attack requires that the attacking miner forfeits all of the 

transaction fees offered by VeriBlock PoP miners and must generate at least one valid 

VeriBlock block at the current VeriBlock difficulty each time the censorship attack is 

attempted.  

Furthermore, unless the attacker is willing to continually forfeit their block rewards and 

transaction fees on Bitcoin in the event of a failed attack, the attacker would still publish 

their Bitcoin blocks in the Bitcoin blockchain, and the censorship of PoP transactions would 

be publicly visible whenever attempted (as a period of several Bitcoin blocks would lack any 

PoP validations of the public VeriBlock chain and would contain an endorsement of an 

unknown VeriBlock block instead). The frequency and average length of these published 

unsuccessful attacks can be used to approximate the hashrate controlled by the attempting 

attacker. 

As a result of analyzing the probabilities of a 30% hashrate attacker successfully executing a 

censorship attack along with the probabilities for more than n Bitcoin blocks occurring 

before m=10 VeriBlock blocks (the period over which the a full reward multiplier cycle runs) 

and determining that 30 seconds was the lowest our block time could go before threatening 

the decentralization of mining given recent relay performance of Bitcoin, n=11 Bitcoin blocks 

was selected as the Bitcoin finality period. 
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8    VeriBlock Blockchain Specifications   
A number of design decisions were made in architecting the VeriBlock blockchain to 

optimize the speed, scalability, and additional benefits that it provides to blockchains which 

leverage it for security, as well as make secure SPV implementations require minimal 

bandwidth and processing power. Due to the significant divergence of the VeriBlock 

blockchain architecture from any particular blockchain daemon software, we opted to build 

the VeriBlock codebase from the ground up.  

 

8.1    Merkle Patricia Tree Ledger  

VeriBlock’s balance sheet (which associates each address to a balance and signature index) is 

implemented as a Merkle Patricia Tree, which allows compact balance proofs which offer 

O(log(n)) complexity for lookups, insertions, and deletions[4]. Note that this implementation 

detail isn’t relevant to altchains using VeriBlock for security; a UTXO model could have been 

equivalently used.  

 

8.2    Blocksize Calculation and Allowances  

In order to properly align incentives of VeriBlock PoW miners with the health of the chain, 

VBK->BTC PoP transactions are not counted in the blocksize calculation (elsewise VeriBlock 

PoW miners would favor including less or zero VBK->BTC PoP transactions in their blocks in 

order to collect more fees from fee-paying transactions). 

The size of standard VeriBlock transactions (which may contain PoP payloads from altchain 

PoP miners) is based off of the serialized format used for TxID calculation. The size of 

multisig VeriBlock transactions is based off of a fixed size calculation per signature present in 

the transaction. 

VBK blocks are limited to 256KB of normal transactions (standard and multisig) unless they 

contain VBK->BTC PoP transactions, at which point they are allowed up to 384KB, based on 

the ratio of the number of VBK->BTC PoP transactions the block contains relative to the 

network’s current PoP difficulty. This acts as an additional incentive for VeriBlock PoW 

miners to include VBK->BTC PoP transactions in their blocks; while VBK->BTC PoP 

transactions don’t directly pay fees, they allow the VBK PoW miner to include more fee-

paying transactions in their blocks.  

 

8.3    Standard Addresses and Standard Transactions 

Signatures on the VeriBlock network use ECDSA with the secp256k1 curve. A standard 

address represents one public/private keypair, and is generated by the following algorithm:  

1. Generate an ECDSA public/private keypair 
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2. Hash the X509-encoded public key with SHA-256, represent as Base58 

3. Concatenate ‘V’ + (first 24 characters of hash generated in step 2) 

4. Hash the result of step 3 with SHA-256, represent as Base58 

5. Concatenate the first 5 characters of the hash created in step 4 at the end of the 

result of step 3. The result is the standard address. 

 

Standard transactions on VeriBlock send coins from one source address (which is a standard 

address) to one or more output addresses, and can optionally include additional arbitrary 

data, which altchain PoP miners use to publish altchain state data to VeriBlock. While no 

validation rules (other than a maximum size of 65,535 bytes) are enforced on the arbitrary 

data, there is an encoding format used by VeriBlock which, if followed by the altchain, will 

allow it to take advantage of altchain ID tracking, further explained in section 8.9. 

The format of a standard transaction is as follows (without the signature, which signs the 

TxID generated by the serialized transaction): 
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8.4   Multisig Addresses and Transactions  

VeriBlock supports M-of-N multisig transactions, up to M and N values of 58. Multisig 

addresses follow a special format which allows the M and N values to be obtained by 

inspection. 

A multisig address on VeriBlock is composed of and controlled by multiple standard 

VeriBlock addresses. 

Conveniently, this allows easy generation of additional multisig addresses with different M 

values (up to N) which share the same signing group by just changing the M value and re-

calculating the checksum. 

The algorithm for generating a VeriBlock multisig address is: 

1. Generate or Select N (where 1 < N <= 58) standard VeriBlock addresses which represent 

the desired members of the signing group  

2. Decide on a value M (where 0 < M <= N), which represents the threshold of unique 

members who have to sign a transaction for it to be considered valid 

3. Concatenate all String representations of the VeriBlock addresses (and store the order in 

which they were concatenated, note that the same standard address can be used 

multiple times) 

4. Hash the concatenation created in step 3 with SHA-256, represent as Base58 

5. Concatenate: ‘V’ + Base58Encode(M - 1) + Base58Encode(N - 1) + (first 22 characters of 

hash generated in step 4) 

6. Hash the result of step 5 with SHA-256, represent as Base58 

7. Concatenate the first 4 characters of the hash created in step 6 at the end of the result of 

step 5 

8. Append a ‘0’ to the end of the result of step 7. The result is the multisig address. 

 

 

The format of a signed multisig transaction is as follows: 
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Exactly M MultisigSlots in the MultisigBundle must be populated and validly sign the TxID of 

the transaction’s simple serialization. These must be populated in order such that the 

multisig source address can be recomputed. 

 

8.5    PoP Transactions  

Only standard addresses can generate VeriBlock PoP transactions. These PoP transactions 

include the endorsed VeriBlock block, the full Bitcoin transaction containing the VeriBlock 

block header and PoP payout information, the Merkle path proving the Bitcoin transaction is 

in a valid Bitcoin block, the header of the Bitcoin block which includes the Bitcoin transaction 

(and validates the Merkle root), and 0 or more context Bitcoin block headers required to 

connect the containing Bitcoin block to the known state of the Bitcoin blockchain at the time 

of the endorsed VeriBlock block. They follow the format: 
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8.6    Block Format  

The desire to fit alongside PoP payout information into a Bitcoin 80-byte OP_RETURN (for 

efficiency sake, see section 8.10 for the alternate arbitrary data encoding format) along with 

keystoning (explored in section 6.2) and the desire to have the block index encoded directly 

in the header (such that PoP publications of non-continuous headers can be ordered 

appropriately for Early Attack Detection) dictates a divergence from the traditional block 

header formats of other blockchains. The block header is 64 bytes long, and is formatted as 

follows: 

Block Header Format (64 Bytes) 

Size (Bytes) Type Data 

4 int32 Block Height 

2 int16 Version 

12 bytes Previous Block Hash (End) 

9 bytes 
First Previous Keystone Block 

Hash (End) 

9 bytes 
Second Previous Keystone 

Block Hash (End) 

16 bytes Merkle Root Hash 

4 int32 Timestamp 

4 int32 Difficulty 

4 int32 Nonce 

 

Or visually (block #22 on the VeriBlock mainnet used for illustration purposes): 
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The PoW Target is encoded using the same ‘nBits’ compressed target format used by 

Bitcoin[2]. The bytes of the previous block hash, previous keystone hash, and second previous 

keystone hash are the ending bytes of the hash (the minimum PoW difficulty of the network 

ensures a minimum number of zeros at the beginning of the hash which ensure significantly 

more protection against collisions than 9 or 12 bytes would ordinarily provide). 

Similar to Bitcoin’s Merkle root, the VeriBlock top-level Merkle root is the only piece of data 

directly resulting from the contents of the block itself: 
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8.7    Difficulty Algorithm  

In order to ensure that an attacker with a high hashrate can’t produce blocks at a fast 

enough rate to significantly outrun the legitimate network blocks (and thus publish VBK 

block headers to Bitcoin significantly earlier than the “legitimate” block headers of the public 

network would be published to Bitcoin which would make it possible for the attacker to beat 

the Bitcoin finality delay guarantees), the properties of the difficulty algorithm were carefully 

selected. 

The difficulty algorithm is closely based on LWMA[3]. It has a retarget period of 100 blocks, 

which allows rapid adjustments to difficulty increases. As a result, even an attacker 

controlling orders of magnitude more vBlake hashing power than the VeriBlock network will 

be unable to make a fork which produces blocks early enough to cause the PoP score of 

blocks on the “legitimate” public VeriBlock chain to be zero. 

 

8.8    Segwit-Like Transactions  

In order to eliminate the possibility of signature malleability being used to manipulate TxIDs, 

VeriBlock TxIDs are calculated based off an encoded format containing only the source 

address, source amount, destination addresses and amounts, signature index, and “extra 

data” (the “OP_RETURN” equivalent on VeriBlock, which is where altchain PoP miners put 

their PoP payloads). 

This protects users from signature malleability attacks which could trick them into thinking a 

transaction did not complete successfully, which is helpful to any software performing 

transactions on VeriBlock, including altchain PoP mining. 

 

8.9    Altchain Data Publication Format and ID Tracking  

On Bitcoin, it is impossible to verify that a transaction does not exist in a block without 

analyzing the entire block. As a result, Early Attack Detection for VeriBlock needs to digest 

every transaction on the Bitcoin blockchain to determine whether it has any implications for 

VeriBlock’s PoP consensus. 

In order to make PoP easier to implement for altchains, each altchain adopts a unique 

identifier which all PoP transactions done on its behalf must carry. When VeriBlock blocks 

are produced, they contain a metapackage which records the number of PoP transactions 

which are relevant to that altchain which exist in that particular VeriBlock block. As a result, 

providing the Merkle proof that the altchain’s ID pairs to a particular number in the 

metacontent package along with that number of Merkle proofs of transactions containing 

the altchain ID provides full knowledge of information relevant to altchain consensus 

without requiring exhaustive searches of all VeriBlock blocks. 
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Altchains which wish to take advantage of this ID tracking will need to serialize their PoP 

data in the following format: 

 

Note that the context and payout info sections can both be omitted (size of context size and 

size of payout info size both set to zero). The maximum total size of the serialized payload is 

65535 bytes.  

 

8.10    Alternate PoP Data Encoding Format in Bitcoin 

The way the VeriBlock blockchain looks for data in a Bitcoin transaction is designed such that 

changes to the Bitcoin scripting language functionality, modifications to the set of standard 

transaction script formats for relay, changes or removal of OP_RETURN, introduction of new 

signature schemes, etc. do not require VeriBlock to hard-fork to interpret the new data.  

The algorithm for extracting VeriBlock data from a Bitcoin transaction first looks for a 64-

byte contiguous section of the provided Bitcoin transaction which contains a valid VeriBlock 

block header (which hashes to a value below its embedded target), and if found will use the 

discovered header as the PoP-published block header, and the following 16 bytes as the 

miner identification data.  

In the event that a contiguous valid block header is not found, an alternate encoding format 

is used. This encoding format uses a magic number to indicate the start of the encoding 

guide, which specifies how many chunks the data is broken up into, where each chunk is, 

and the length of each chunk. The encoding guide, when interpreted, produces a list of skips 

and reads (start at the beginning of the raw transaction, skip n1 bytes, read m1 bytes, skip n2 

bytes, read m2 bytes, … skip nnum_chunks bytes, read mnum_chunks bytes). 

First, The algorithm searches for the magic bytes 0x927A59. This magic value was selected as 

it is tied for the fewest organic occurrences of any 24-bit sequence in transactions on the 

Bitcoin blockchain as of December 2018. It should be noted that false-positives of the magic 

bytes do not result in any consensus problems for the VeriBlock blockchain, and their (likely 

unintentional) inclusion in a PoP-data-carrying transaction on Bitcoin will not prevent the 

transaction from legitimately publishing and proving PoP data; any false-positive magic 

number occurrences which aren’t followed by a valid encoding guide which recovers a valid 

VeriBlock block header is ignored. If the transaction includes a valid encoding guide 

(prefaced by the magic bytes) later on, the transaction is still valid.  

If the magic bytes are found, the next 4 bits are read and interpreted as an unsigned 4-bit 

integer which represent the number of chunks the data is split up into (num_chunks). The 
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next 2 bits are read and interpreted as an unsigned 2-bit integer which represents the length 

of each encoded offset distance descriptor (offset_descriptor_size), with the following 

lookup table representing the respective values: 

Encoded Offset Distance Descriptor Size Lookup Table 

Binary Value Offset  

00 4 

01 8 

10 12 

11 16 

 

Then, the next two bits are read and interpreted as an unsigned 2-bit integer which specifies 

the length of each encoded chunk size descriptor (chunk_length_descriptor_size), with the 

following lookup table representing the respective values: 

 

Encoded Chunk Length Descriptor Size Lookup Table 

Binary Value Offset  

00 4 

01 5 

10 6 

11 7 

 

Then, (num_chunks -1) times, the next offset_descriptor_size bytes are read and interpreted 

as a offset_descriptor_size-byte unsigned integer which represents the number of bytes to 

skip, and then the next chunk_length_descriptor_size bytes are read and interpreted as a 

chunk_length_descriptor_size-byte unsigned integer which represents the number of bytes 

to read for the chunk (chunk_size). Then, the next offset_descriptor_size bytes are read and 

interpreted as an offset_descriptor_size-byte unsigned integer which represents the final 

number of bytes to skip before reading the final chunk, and the size of the last chunk is 

implied by the formula: 

𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒𝑛𝑢𝑚_𝑐ℎ𝑢𝑛𝑘𝑠 = 80 −  ∑ 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒𝑖

𝑛𝑢𝑚_𝑐ℎ𝑢𝑛𝑘𝑠 −1

𝑖=1
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Here is a concrete example of an encoding guide which describes a skip-read list of: 

skip36,read20,skip39,read20,skip31,read21,skip35,read19.  

 

 

 

It should be noted that the data comprising the encoding guide can be accessed by the skip-

read-list specified by the encoding guide.    

In the special case of Bitcoin Segwit transactions (or any other future transaction type where 

some data ‘required’ to properly validate the transaction is not included in the data used for 

TxID calculation), the transaction must be filtered down to only the bytes used for TxID 

calculation for VeriBlock PoP data validation purposes. As such, no part of the encoding 

guide, or the chunks the encoding guide points to, can be included in the filtered data. 

Additionally, the VeriBlock blockchain network will not extract multiple endorsements from 

a single Bitcoin transaction, even if multiple endorsements are included. Once the VeriBlock 

BTC transaction search/validation algorithm finds a valid VeriBlock header (along with 

corresponding PoP miner payout information), it stops. This prevents game theory issues 

where PoP miners could delay publication of a VeriBlock block header until they have two 

(or more) headers they believe they will benefit from publishing, and include these multiple 

header publications in a single transaction.  

If a Bitcoin transaction contains one or more contiguous 64-byte segments which constitute 

a valid VeriBlock header, the first header published in the transaction is the only one the 

VeriBlock network will accept as being endorsed (and any headers published using an 

encoding guide are ignored). If no valid contiguous 64-byte segments are a valid VeriBlock 

header, then the first encoding guide which describes a valid 64-byte VeriBlock block header 

will be used to extract the endorsed header, and any subsequent encoding guides, 

regardless of described header validity, are ignored. 
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9    Integrating VeriBlock Security Into Altchains  
Altchains will need to store and validate the PoP data altchain PoP miners produce (both 

altchain PoP transactions and their associated context, and VeriBlock PoP transactions and 

their associated context). This allows the altchain to have a complete SPV-level view of the 

VeriBlock (and by extension, Bitcoin) blockchains which it can reference in the event that an 

altchain fork is proposed. 

Two types of the integration are possible, and they are compatible with each-other on a 

consensus level (so moving from one type of integration to the other does not require a 

hard/soft fork). The first is a standalone service/process which handles calls over gRPC through 

a bound port, and the second is an integration library built in the native language of the 

blockchain daemon. Both serve the same purpose, and are collectively referred to as the 

“VeriBlock integration point.” 

At a high level, altchains will need to introduce a new transaction type which carried Proof-

of-Proof data created by Altchain PoP miners, be able to validate the data contained within 

these transactions, be able to store these transactions in a protected section of their blocks 

(which doesn’t count towards the blocksize limitations enforced on altchain PoW miners), be 

able to reward PoP miners based on the data contained in these transactions, and be able to 

reference the views of VeriBlock and Bitcoin provided by the data in these transactions when 

resolving forks.   
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9.1    Altchain PoP Parameters  

As covered in chapter 6 (with a worked-out version for VeriBlock’s own selection of these 

parameters in chapter 7), several PoP parameters have to be decided on, based on the 

altchain’s security timeliness requirements, minimum tolerable publication frequency, and 

block time. 

The following parameters need to be decided on: 

• keystone_interval 

• num_referenced_keystones 

• keystone_finality_delay 

• pop_reward_settlement_interval 

• pop_reward_payment_delay 

• fork_resolution_relative_score_lookup_table 

• pop_relative_score_lookup_table 

• Per-block PoP payout reward curves 

9.2    Difficulty Algorithm  

For blockchains where the difficulty of block creation is governed by a difficulty adjustment 

algorithm based on the timestamp of blocks (ex: PoW), the algorithm needs to be tweaked 

Summary of SI Blockchain Modifications by Section 

Section Modification(s) 

9.1 
The altchain must decide on the PoP security parameters 

discussed in chapter 6 

9.2 

The blockchain’s difficulty algorithm must prevent a high-
hashrate attacker from producing blocks fast enough to 

violate the finality delay of the chain with respect to 
VeriBlock publication height 

9.3 

One or two (depending on security goals) new transaction 
types/script format(s) must be introduced to store PoP 

payloads, and the block size calculation algorithm should 
not include these transactions in its calculation 

9.4 
The coinbase transaction must provide PoP payouts to 

altchain PoP miners 

9.5 
The block validation code must be updated to account for 
any block structure changes made to accommodate PoP, 

as well as to validate all altchain PoP transactions  

9.6 
The code which resolves which fork to take in the event 
of multiple proposed versions of SI blockchain history 

must use ATVs to determine the better fork 
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to ensure an attacker can’t produce blocks quickly enough to violate the 

keystone_finality_delay of the altchain. The fork resolution algorithm of the altchain will 

weight altchain keystone blocks based on the index of publication in VeriBlock. The difficulty 

algorithm should ensure that attackers (even those with orders of magnitude more hashing 

power than the main network) are unable to produce blocks fast enough to publish them to 

VeriBlock early enough such that blocks from the main chain would lose continuity. 

 

9.3    New Transaction Types / Script Templates, Modified Block “Size” Calculation  

In order for an altchain to secure itself to VeriBlock, it must track the current state of the 

VeriBlock blockchain (and by proxy, the Bitcoin blockchain), and be able to validate proofs 

from altchain PoP miners that a particular altchain block header (+ any additional 

information) was published to VeriBlock. To facilitate this, one or more new transaction 

types need to be introduced. As a result, the altchain will maintain (delayed) SPV-level 

knowledge of VeriBlock and Bitcoin, constructed entirely from data returned by altchain PoP 

miners. 

Two types of data payloads exist—VeriBlock-to-Bitcoin proofs (VTBs), and Altchain-to-

VeriBlock proofs (ATVs). VTBs provide sufficient data for the altchain to track the state of the 

VeriBlock and Bitcoin blockchains with SPV-level security, including full PoP weighting fork 

resolution for VeriBlock. ATVs prove that a transaction exists in a VeriBlock block which is 

plausibly part of the main chain (incorporated into a block whose header builds on a set of 

zero or more headers that connect to the “known” VeriBlock chain according to a previous 

view of the VeriBlock chain known by the altchain based on VTBs and, in some cases, the 

VeriBlock block header context contained in ATVs).  

The content of ATV and VTB payloads can be considered as a black-box from the altchain’s 

perspective: all of the work required to process them and maintain the SPV-level view of 

VeriBlock is done by the integration point on behalf of the altchain. 

Altchains may either opt to bundle ATV and VTB payloads together in a single altchain PoP 

transaction (such that an altchain PoP miner doesn’t return any data to the altchain until a 

VTB which publishes a VeriBlock keystone period the ATV proves to is available), or 

introduce two altchain PoP transactions; one which returns an ATV as soon as it is available, 

and another which follows up with one or more VTB publications which provide Bitcoin-

based security context for the VeriBlock keystone period which includes the ATV transaction. 

Having a single transaction type which contains both the ATV and one or more VTBs (as 

needed) provides an implementation complexity reduction, along with small space savings 

(the “scaffolding” for an additional transaction isn’t required). Alternately, having separate 

ATV and VTB PoP transactions allows the altchain to use VeriBlock’s native PoW as a middle-

ground protection against reorganization attacks more quickly (particularly if the altchain 

fork_resolution_publication_delay_latency_lookup_table is aggressive enough that the 
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weighting cliff “often” ends before a VeriBlock keystone period finishes, publications of it get 

to Bitcoin, and the proof is returned to VeriBlock).  

For the two-transaction-type implementation, the general workflow for an altchain PoP 

miner is as follows: 

 
 

 

9.4    Altchain PoP Payouts  

In order to pay out rewards to the altchain PoP miners, some type of blockchain-enforced 

payout mechanism must exist. Generally, this will take the form of a portion of the coinbase 

transaction paying out new coins (plus delayed fees) to PoP miners. As discussed in section 

6.6, the payout for PoP miners who successfully endorsed block n will occur at block 

n+pop_reward_payment_delay. A coinbase transaction is only valid if it contains the correct 

PoP payouts based on altchain PoP transactions which are in the altchain before block 

n+pop_reward_settlement_delay.  

 

9.5    Additional Block Validation Rules  

When a new block is added onto the altchain, all of the PoP transactions (carrying either 

ATV, VTB, or ATV + VTB payloads) must be checked for validity.  

ATV and VTB payloads have their own internal consistency rules independent of network 

state (provided block headers are contiguous with one another and validate at their encoded 

difficulties, Merkle proofs are correct, etc.), which are handed off to the integration point. 

Additionally, ATV and VTB payloads have additional validity requirements based on the 

current view of the VeriBlock blockchain held by the integration point (which is based on 

previous VTB payloads handed to the integration point by PoP transactions in previous 

altchain blocks, except in the trivial case of the first VTB on the altchain network connecting 
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to the hard-coded VeriBlock starting header). VTB payloads must provide VBK block headers 

which connect to the previously-known VBK chain, and the included VeriBlock PoP 

transactions must contain sufficient Bitcoin headers to connect to the known state of the 

BTC chain. ATV payloads must connect to the known VeriBlock chain. These validations are 

also handled by the integration point. 

It follows that these transaction validity rules for transactions in a block should also be 

applied to transactions a miner attempts to put into a block; new altchain PoP transactions 

propagating on the altchain network should be validated in a similar fashion before being 

allowed entry into the mempool, and because a reorganization of the altchain can cause the 

integration point’s delayed SPV view of VeriBlock and Bitcoin to change, reorganizations 

should trigger a re-validation of all pending altchain PoP transactions in the mempool (unless 

VTB and ATVs are required to connect to the VeriBlock SPV view at the time of the PoP’d 

altchain block, at which point the only validity check would be that the endorsed altchain 

block is still part of the main chain). 

As previously stated, PoP transactions should not count towards the blocksize / gas limit that 

altchain block miners are beholden to. As a result, the block validation rules should also be 

tweaked accordingly, in addition to being updated to handle any format changes made to 

the block to accommodate PoP transactions. 

 

9.6    Altchain Fork Resolution  

When an altchain fork occurs over the boundary of at least one keystone period, the correct 

chain is chosen based on the PoP scores of the two chains. As such, the altchain must 

implement the algorithms described in sections 6.3-6.5, including an efficient way to quickly 

gather all altchain PoP publications containing ATVs of blocks in each keystone period for 

any chain fork. 

In order to ensure the SPV view of VeriBlock (and by extension, Bitcoin) correctly reflect 

knowledge contained in both forks, the altchain integration point offers a mechanism of 

temporarily adding data to the view. From the block height of divergence for the two chains, 

any VTBs in the chain which isn’t currently the main chain must be provided to the 

integration point in the “temporary” addition format, and then cleared after the correct fork 

is determined. If the fork resolution algorithm determines that the currently-applied chain is 

inferior, the current chain will be unapplied (unapplying all of the changes VTB and ATV 

payloads in the current chain back to the forking point, and then applying all of the VTB and 

ATV payloads in the new chain).  
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10    False EAD Triggering Prevention With PoW Proofs  
Because not all headers of a SI chain are required to be published to an SP chain, an attacker 

on a Proof-of-Work SI chain with less than 51% of the SI chain’s hashing power could produce 

publications to the SP chain which signal an attack. While the attacker will never be able to 

actually cause a reorganization, these false-positive warnings for Early Attack Detection could 

be used as a means to cause disruption to services built around the SI blockchain. The exact 

amount of hashing power required to generate these false positives depends on the required 

frequency of full PoW-valid headers (which are a result of keystone i and r values). 

In order to force an attacker to control and utilize a significant portion of the SI chain’s 

hashrate to generate valid EAD warnings, PoW Proofs can be used. These consist of a number 

of extra headers included in a blockchain’s PoP publications which demonstrate statistical 

evidence that a sufficient amount of Proof-of-Work has been done to generate an equally valid 

blockchain. 

For an SI chain publishing to VeriBlock, these extra headers can be published in the 

context_info section of the Altchain PoP Endorsement.  

 

10.1    Background  

In Proof-of-Work, the target refers to the maximum value a resultant hash can have and still 

be a valid solution. For example, if a theoretical hashing function outputs random numbers 

between 0 and 999 inclusive (base-10 numbers used for simplicity), and the target is 100, then 

inputs which produce a hash output [0, 100) will be valid solutions.  

However, any solution with a hash below 100 is “above difficulty,” meaning that the solution 

would have also been valid at a higher difficulty (lower target). Because of the uniform 

distribution of hashing functions, any solution between 0 and 100 is equally likely, despite a 

solution of 10 being valid at a roughly 10x difficulty (thus, having a difficulty multiple (dm) of 

10). As a result, every PoW solution except one (which exists exactly at the target) will actually 

have a higher valid difficulty than the network requires.  

For the range [0, 100) with a target (tgt) of 100, solutions will have a dm ranging from 1 to 100 

(ignoring the solution 0, which has an infinite dm), and an expected difficulty multiple (edm) 

of ~2.9290.  

As the range grows larger, the edm grows logarithmically. The edm can be calculated as 

follows: 

edm =
∑

𝑡𝑔𝑡
𝑥

𝑥=𝑡𝑔𝑡
𝑥=1

𝑡𝑔𝑡
=   ∑

1

𝑥

𝑥=𝑡𝑔𝑡

𝑥=1
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For large values of tgt where the above is impractical to calculate naively, the following 

formula can be used: 

edm = γ +  ψ(0)(1 + 𝑡𝑔𝑡) 

𝑤ℎ𝑒𝑟𝑒 𝛾 𝑖𝑠 𝐸𝑢𝑙𝑒𝑟′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝜓(0) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

Or equivalently: 

edm =  γ + ∫ (
1

𝑒𝑥𝑥
−

1

𝑒(1+𝑡𝑔𝑡)𝑥(1 − 𝑒−𝑥)
)

∞

0

 dx 

 

At the time of the VeriBlock genesis block on March 25th, 2019, the Bitcoin target was 

0000000000000000002c1f6c0000000000000000000000000000000000000000, making 

Bitcoin’s edm approximately 126.3581. However in practice this value is not achieved in the 

sample sizes (number of blocks) seen on Bitcoin, due to the dramatic effect that values in the 

long-tail have. As such, the edm is only useful as a sanity check to ensure that the selected 

PoW Proof parameters (see section 10.3) are sane, but has too high of a variability to be 

otherwise useful. 

 

The probability p that any particular block’s dm is above (inclusive) a particular ratio (minimum 

difficulty multiple, or mindm) is: 

p =  
1

𝑚𝑖𝑛𝑑𝑚
 

 

And the probability p that any particular block’s dm is below (inclusive) a particular ratio 

(maximum difficulty multiple, or maxdm) is: 

p = 1 −  
1

𝑚𝑎𝑥𝑑𝑚
 

 

Accordingly, the probability p that any particular block’s dm is between (inclusive) a particular 

mindm and maxdm is: 

p =  
1

𝑚𝑖𝑛𝑑𝑚
−  

1

𝑚𝑎𝑥𝑑𝑚
 

 

Alternately, this can be expressed as: 

P(𝑚𝑖𝑛𝑑𝑚 ≤ 𝑥 ≤ 𝑚𝑎𝑥𝑑𝑚) =   ∫
1

𝑥2
𝑑𝑥

𝑚𝑎𝑥𝑑𝑚

𝑚𝑖𝑛𝑑𝑚

 for 1  ≤ 𝑚indm  < maxdm 



 

63 
 

 

The probability that at least n out of m blocks occur with dm ≥ mindm is: 

 

∑ (
𝑚
𝑘

) (
1

𝑚𝑖𝑛𝑑𝑚
)

𝑘

(1 −  
1

𝑚𝑖𝑛𝑑𝑚
)

𝑚−𝑘𝑚

𝑘=𝑛

 

 

10.2     PoW Proofs Introduction  

PoW Proofs take advantage of the properties explored in section 10.1 by allowing the 

publication of a small number of recent headers with high dm values to demonstrate with high 

statistical probability that sufficient work was done to generate a particular number of blocks 

at a given difficulty. Other technologies like NiPoPoW[6] use similar properties of Proof-of-

Work to make more efficient probabilistic PoW validation. 

A normal Proof-of-Work chain at difficulty d would expect to have 50% of its blocks with a dm 

greater than or equal to 2, 25% of its blocks with a dm greater than or equal to 4, etc. As a 

result, two valid PoW solutions with dm ≥ 4 are convincing evidence that 8 valid PoW solutions 

were generated at difficulty d (in order for an attacker to create these two PoW solutions 

where dm ≥ 4, they would, on average, have to do the same amount of work as to generate 8 

blocks at difficulty d). 

As a result, a number of top blocks (topb) based on their dm out of a number of total blocks 

(totb; generally the maximum number of block headers which can be skipped while 

maintaining full publication continuity of the SI chain) can be selected and have their full PoW 

solution (generally the complete header) published. 

Because the topb blocks are not guaranteed to have the appropriate dm values, a failure of 

topb blocks to satisfy the requirements will require alternate proofs, covered in section 10.4.  

 

10.3      Parameter Selection  

Selection of topb and mindm variables depend on totb and poses a trade-off between the 

amount of extra data published to the SP chain and the percentage of the hashing power of 

the SI blockchain an attacker requires to trigger EAD. 

The percentage of hashpower an attacker needs to falsely trigger EAD is based on the 

following ratio: 

fals𝑒_𝐸A𝐷_ℎashpowe𝑟_𝑟equirement =  
𝑡𝑜𝑝𝑏 ∗ 𝑚𝑖𝑛𝑑𝑚

𝑡𝑜𝑡𝑏 
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The following table demonstrates the probabilities that at least the given topb number of 

blocks in a period of topt will have the specified dm values: 

 

Color           

Probability 
(minimum, 

inclusive) 

 
0%  60%  70%  80%  95% 

Probability 
(maximum, 

exclusive) 

 
60%  70%  80%  95%  100% 

 

Probability of topb Out of topt Blocks Meet dm Threshold 

 Difficulty Multiple (dm) 

topb = 1 

 

topb = 2 

2 5 8 10 15 2 5 8 10 15 

B
lo

ck
s 

in
 P

e
ri

o
d

 (
to

p
t)

 5 96.875% 67.232% 48.709% 40.951% 29.175% 81.250% 26.272% 12.073% 8.146% 3.881% 

8 99.609% 83.222% 65.639% 56.953% 42.417% 96.484% 49.668% 26.370% 18.690% 9.512% 

10 99.902% 89.263% 73.692% 65.132% 49.839% 98.926% 62.419% 36.110% 26.390% 14.009% 

12 99.976% 93.128% 79.858% 71.757% 56.304% 99.693% 72.512% 45.330% 34.100% 18.850% 

15 99.997% 96.482% 86.510% 79.411% 64.474% 99.951% 83.287% 57.592% 45.096% 26.410% 

20 99.999% 98.847% 93.079% 87.842% 74.839% 99.998% 93.082% 73.305% 60.825% 38.894% 

25 99.999% 99.622% 96.450% 92.821% 82.180% 99.999% 97.261% 83.772% 72.879% 50.357% 

 

As can be seen in the above table, the same false_EAD_hashpower_requirement values can 

be achieved with slightly higher probability (and thus, efficiency) with lower topb values. 

However, many false_EAD_hashpower_requirement options are not available with topb=1 

(particularly in the case of low topt values), so selecting topb > 1 may prove useful.  

For a concrete example, a blockchain with properties: {totb=20, topb=1, mindm=8} will have 

a false_EAD_hashpower_requirement of 40% (so an attacker wishing to falsely trigger EAD 

would need 40% of the hashrate the legitimate chain is built with). Additionally, it will have a 

93.079% chance of each 20-block period producing a valid PoW Proof (which requires 

publication of topb=1 additional headers), meaning 6.921% of publications will not be able to 

generate a valid proof (and require alternate proof, see section 10.4).  
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10.4      Alternate Proofs When mindm Isn’t Met by topb Blocks  

Not every period of totb blocks will generate topb blocks which meet or exceed the prescribed 

mindm value (except in the trivial case where mindm = 1.0), so a backup mechanism needs to 

exist. 

The simplest backup mechanism is to require the PoP miner to publish all of the headers in 

the topb period (note that only requiring publication of topb * mindm blocks is insufficient as 

it lowers the challenge to producing either topb blocks at mindm OR topb * mindm blocks at 

dm=1). However, this does produce large proofs; requiring topb headers to be published. 

Another potential backup mechanism is to use zero-knowledge proofs, covered in section 

10.6. 

 

10.5      [Experimental] Dynamic Keystoning  

Altchains can also implement a dynamic form of keystoning, where rather than keystone 

blocks occurring at a scheduled interval, keystones blocks are instead those which happen to 

have a high difficulty multiple. Because of the ability of an attacker with a significantly higher 

hashrate than the entire network to produce keystones at a more frequent interval if 

keystoning is based off of the dm value of a particular block, rules regarding the minimum 

permitted number of blocks between acknowledged keystones should be introduced, such 

that the worst-case keystone production speed is unable to cause the finality issues discussed 

in sections 6.4, 7.5, and 9.6. 

Although the keystone block intervals will be unpredictable, the average frequency of 

keystones given mindm is: 

p =  
1

𝑚𝑖𝑛𝑑𝑚
 

 

And the probability of an interval taking more than interval_length blocks is: 

p =   (1 −
1

𝑚𝑖𝑛𝑑𝑚
)

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ

 

 

Blockchains also must enforce a maximum interval length (max_interval_length) which 

prevents an attacker from forging “long” chains with few publications. The chain is protected 

against an EAD-triggering attacker having less than mindm/max_interval_length hashing 

power relative to the main network.   

For example, a blockchain could define a keystone as any block with dm > 10, and enforce a 

max_interval_length of 50 blocks. The probability that a period of 50 blocks would pass 

without having one block with dm >= 10 is approximately 0.515%, and would cause the 
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network to ‘freeze’ while trying to mine the 50th block at dm >= 10 for, on average, 10 

additional SI blocktimes. To falsely trigger EAD, an attacker would need to control 10/50 = 20% 

of the network’s hashrate. 

 

10.6   [Experimental] Zero-Knowledge Proofs  

Altchains with Proof-of-Work algorithms simple enough to be implemented (practically) in a  

PoW verification circuit which zero-knowledge proofs can demonstrate a prover has 

appropriate headers such that, when provided to the function, are all contiguous and all 

satisfy the relevant PoW difficulty proofs may be able to utilize zero-knowledge proofs to 

attest to the existence of a number of valid Proof-of-Work solutions without requiring the 

publication of all of them.  

Zero-Knowledge Proofs provide better anti-false-EAD triggering characteristics than 

publishing a small number of high-dm block headers as probabilistic proof, particularly 

considering the concessions required to make high-dm constructions work without requiring 

alternate proofs often. However, the protection against anti-false-EAD triggering is strictly 

worse than that provided by requiring the publication of all block headers in the relevant 

period, because of the additional hardness assumptions which protect against false proofs. 

The zero-knowledge circuit would, given an input of a number of headers, confirm that each 

provided header hashes to a result which is below a particular specified target, that each 

header builds on the previous header’s hash, and that the final header is the one previous to 

the plaintext header that the PoP miner is endorsing.  

In systems where the security profile of zk-SNARKs are tolerable (trusted setup[7] and the 

KEA1[8] assumption), zk-SNARKs should provide small-footprint proofs that sufficient Proof-of-

Work power was used to build a chain without requiring publication of all of the headers. 

Bulletproofs[9] may prove a useful alternative to zk-SNARKs where the trusted setup of zk-

SNARKs is unacceptable, and only the hardness of the discrete log problem is required. 

Bulletproofs will be larger than zk-SNARKs, but likely smaller than whole-header publication.  

The large proof sizes of zk-STARKs[10] likely renders them uninteresting for PoW Proofs; it will 

generally be cheaper to publish all of the headers (particularly because the “zero knowledge” 

part is unimportant for our uses; we only care about the succinctness of proofs being more 

space-efficient than publishing all of the headers). 

It should be noted that the security failure of the zero-knowledge proof used for PoW Proofs 

will only reduce the blockchain’s security against false EAD triggering; it has no bearing on the 

ability to actually perform a reorganization (because all of the actual blocks would need to be 

broadcast to the network), nor any bearing on the soundness of the altcoin’s money supply.  
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Appendix A: Summary of VeriBlock Blockchain Parameters 

VeriBlock Blockchain Parameters 

Parameter Setting Motivation 

Block Time 30 Seconds 
Balance between 

propagation time and 
Bitcoin finality 

Bitcoin Finality Delay 11 Bitcoin Blocks 

Probability of 20 VBK blocks 
occurring before finality 

delay closure is extremely 
small, and a 30% Bitcoin 

hashrate controller would 
have to try tens of 

thousands of attempts at 
censoring VBK PoP 

transactions to succeed for 
the entire finality delay 

period. 

Minimum Difficulty 900,000,000,000 

This difficulty ensures that 
the shorter hashes encoded 
in the VeriBlock header have 

a higher degree of 
protection against collision 

attacks. In practice, this 
variable is unlikely to be 

relevant because it 
represents a hashrate of ~30 

GH/s. 
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Appendix B: VeriBlock Integration Point 
Altchains adopting Bitcoin security through VeriBlock will use the VeriBlock Integration Point 

to record and maintain SPV-level knowledge of VeriBlock (and by extension, Bitcoin). VTB 

payloads contained in PoP transactions on the altchain (discussed in section 9.3) are 

provided to the VeriBlock integration point, from which it constructs the SPV view. During 

fork resolution over a keystone boundary, the altchain will consult the integration point to 

determine the timeliness of publications of its keystone periods to the VeriBlock blockchain. 

During normal operation, the integration point maintains a deterministic SPV-level view of 

VeriBlock based entirely on the VTB publications it has been provided. It maintains an 

association of these VTB payloads with their enclosing altchain block (by block number), so 

that altchain reorganizations can undo the state changes the unapplied blocks made to the 

integration point’s view of VeriBlock. 

During fork resolution, the integration point is temporarily updated with VTB information 

contained within the challenging fork to ensure the integration point’s view includes 

information stored in both forks. After fork resolution, the altchain sends a command to the 

integration point to clear the temporarily-added VTB payloads, which returns the integration 

point’s view to one which only reflects VTB payloads in the main chain. In the event that the 

challenging fork is selected, the altchain still sends the clear command, and then un-applies 

VTB payloads in the previously-main chain back to the forking point, and applies the new 

VTB payloads from the new fork. 

The integration point supports the following commands:  
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checkATVInternally 
 

Description: Runs internal validity checks an altchain-to-VeriBlock publication. 
 
Expected Use: Run on ATV payloads by the altchain for PoP transaction validity 
 
Notes: Internal validation checks performed: 
 

• The provided VeriBlock transaction is formatted correctly 

• The VeriBlock transaction is signed correctly 

• The Merkle root proves the transaction exists in the claimed VeriBlock block header 

• The claimed VeriBlock block header hashes correctly according to its encoded 
difficulty, as do any VeriBlock context headers (if provided) 

• Context VeriBlock headers (if provided) are all contiguous 
  

 

Argument Required Description 

ATV ATVToCheck TRUE 
The ATV to perform internal 

validation on 
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checkVTBInternally 
 

Description: Runs internal validity checks on a VeriBlock-to-Bitcoin publication. 
 
Expected Use: Run on VTB payloads by the altchain for PoP transaction validity 
 
Notes: Internal validation checks performed: 
 

• The provided VeriBlock PoP transaction is formatted correctly 

• The VeriBlock PoP transaction is signed correctly 

• The embedded Bitcoin transaction in the PoP transaction is formatted correctly 

• The Bitcoin Merkle root proves the Bitcoin transaction is in the claimed Bitcoin 
block header 

• All included Bitcoin block headers hash correctly according to their encoded 
difficulty 

• All included Bitcoin block headers are contiguous  

• The VeriBlock Merkle root proves the PoP transaction exists in the claimed 
VeriBlock block header 

• The claimed VeriBlock block header hashes correctly according to its encoded 
difficulty, as do any VeriBlock context headers (if provided) 

• Context VeriBlock headers (if provided) are all contiguous 
  

 

Argument Required Description 

VTB VTBToCheck TRUE 
The ATV to perform internal 

validation on 
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addPayloads 
 

Description: Adds one or more VTBs and/or ATVs to the integration point’s SPV-level view 
of the VeriBlock (and by extension, Bitcoin) blockchain. 
 
Expected Use: When an altchain is applying a block to the main chain (either normally, or 
during fork resolution after now-forked blocks have been unapplied), this method would be 
called with all VTBs and ATVs (if ATVs contain VeriBlock context headers) contained in 
altchain PoP transactions in the given block. 
 
Notes: This command throws an error if the associatedAltchainHeight is less than the 
highest altchain height the integration point is aware of. If an altchain block ‘n’ does not 
contain any VTBs (or ATVs if relevant), this command does not need to be run. An error is 
also thrown if any of the provided VTBs or ATVs do not connect to the known VeriBlock and 
Bitcoin SPV views at the time of addition. Payloads are applied in the order provided, and 
all VTBs are processed before ATV processing begins. A payload can depend on knowledge 
provided by previous payloads in the same provided array, but not on later payloads.  

 

Argument Required Description 

int64 associatedAltchainHeight TRUE 
The height of the SI block 

which contains the particular 
VTBs and/or ATVs provided 

byte[] associatedAltchainHash TRUE 
The hash of the SI block which 
contains the particular VTBs 

and/or ATVs provided 

VTB[] VTBsToAdd FALSE Array of the VTBs to add 

ATV[] ATVsToAdd FALSE 
Array of the ATVs to add the 

VBK context from 
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removePayloads 
 

Description: Removes VTBs and ATVs (if applicable) which were associated with a 
particular altchain height. 
 
Expected Use: When an altchain is unapplying a block which contained one or more VTBs 
or ATVs which were previously provided to the integration point using addPayloads. 
 
Notes: This command throws an error if the altchain height to remove is greater than the 
highest altchain height the integration point knows about. If the most recent batch of VTBs 
(+ ATVs when applicable) was provided to the integration point with 
associatedAltchainHeight=n, then removePayloads(n+1) will fail. Additionally if 
addPayloads was called for associatedAltchainHeight=m and removePayloads(m) has not 
been called, then removePayloads(m-1) will fail. Also if a VTB or ATV was previously 
provided with multiple altchain indexes associated, the VTB’s or ATV’s effect on the 
integration point’s view of VeriBlock won’t be undone until all altchain indexes they were 
related to are undone (if altchain blocks ‘n’ and ‘n+1’ are both associated with a particular 
VTB, then the VTB’s effect on the VBK view will only disappear if removePayloads(n) 
occurs). 

 

Argument Required Description 

int64 associatedAltchainHeight TRUE 

The height of the SI block 
which contains the particular 

VTBs and/or ATVs to be 
removed 

byte[] associatedAltchainHash TRUE 
The hash of the SI block which 
contains the particular VTBs 
and/or ATVs to be removed 
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addTemporaryPayloads 
 

Description: Temporarily adds one or more VTBs and/or the VBK header knowledge from 
one or more ATVs to the integration point’s SPV-level view of the VeriBlock (and by 
extension, Bitcoin) blockchain.  
 
Expected Use: When an altchain is performing fork resolution over a keystone boundary, it 
will add payloads temporarily which are present in the non-incumbent fork to ensure that 
the integration point’s view of VeriBlock reflects all information available in both forks. 
 
Notes: This command throws an error when the provided VTBs and/or ATVs do not connect 
to the current SPV view of VeriBlock and Bitcoin.  

 
 

Argument Required Description 

VTB[] VTBsToAdd FALSE Array of the VTBs to add 

ATV[] ATVsToAdd FALSE 
Array of the ATVs to add the 

VBK context from 

clearTemporaryPayloads 
 

Description: Clears the effects of all VTB and/or ATV payloads which were added using 
addTemporaryPayloads. This returns the SPV views of VeriBlock and Bitcoin back to the 
deterministic view based only on VTB (and ATV, when relevant) payloads in the current 
main altchain fork. 
 
Expected Use: After the correct fork is determined by the altchain’s fork resolution protocol 
when resolving forks which cross a keystone boundary, the temporarily-added payloads 
will be removed. 
 
Notes: In the event that a reorganization does occur, clearing the temporary payloads will 
occur, followed by removePayloads for all altchain blocks after the forking point. The 
application of blocks from the forking point forward will cause calls to addPayloads for all 
of the VTBs (and ATVs, where relevant) in the new fork. 

 
 

No arguments 
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simplifyVTBs 
 

Description: Given a list of VTBs, returns a reduced list of VTBs which communicate the 
“same” information regarding the state of the SPV-level view of VeriBlock and Bitcoin that 
the integration point provides. This allows altchains to de-duplicate VTBs which provide 
redundant information, keeping only the ones which provide the best VeriBlock-to-Bitcoin 
publication for each keystone period covered by the list of VTBs provided. 
 
Expected Use: Altchains can de-duplicate VTBs that they store in their blockchain for space 
savings because some VTBs carry equivalent (or inferior to another available VTB) 
information.  
 
Notes: VTBs are considered informationally equivalent if they contain the proof of the 
same VeriBlock block header to the same Bitcoin block. One VTB is considered strictly 
inferior to another if it either: 
 

1. Expresses a VTB publication which published a VeriBlock block header to Bitcoin in 
a later Bitcoin block than another available VTB expresses a VTB publication of a 
VeriBlock block header in the same VeriBLock keystone period to 

2. Expresses a VTB publication which published a VeriBlock header to the same (or a 
later) Bitcoin block which is after another VeriBlock block header in the same 
VeriBlock keystone period which another available VTB expresses publication to the 
same (or an earlier)  

 
Additionally, VTBs are considered equivalent in the information they provide when they 
contain proof of the same VeriBlock header in a Bitcoin transaction to the same Bitcoin 
block, and a deterministic tie-breaker algorithm. 
 
VTBs which publish VeriBlock headers from the same keystone period to different Bitcoin 
blocks in competing Bitcoin forks are retained.  

Argument Required Description 

VTB[] VTBsToDeduplicate TRUE 
Array of the VTBs to 

deduplicate 
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checkATVAgainstView 
 

Description: Checks that an ATV connects to the known VeriBlock view. 
 
Expected Use: Run on ATV payloads by the altchain during altchain PoP transaction 
validity checks and during fork resolution 
 
Notes: This command calls checkATVInternally on the provided ATV. 
  

 

Argument Required Description 

ATV ATVToCheck TRUE 
The ATV to check for 

connection to the known 
VeriBlock view 
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